Log in

Implementation of a cusp-like for real-time digital pulse shaper in nuclear spectrometry

  • Published:
Nuclear Science and Techniques Aims and scope Submit manuscript

Abstract

Pulse sha**, which improves signal-to-noise ratio excellently, has been extensively used in nuclear signal processing. This paper presents a cusp-like pulse-sha** technique developed through the recursive difference equation in time domain. It can be implemented in field programmable gate array hardware system. Another flat-topped cusp-like shaper is developed to optimize the time constant of pulse sha** and reduce the influence of ballistic deficit. The methods of both baseline restoration and pile-up rejection are described. The 137Cs energy spectra measured with the digital cusp-like shaper are 6.6% energy resolution, while those by traditional analog pulse shaper are 7.2% energy resolution, under the same conditions. This technique offers flexibility, too, in adjusting the pulse shaper parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V. Radeka, Optimum signal-processing for pulse-amplitude spectrometry in the presence of high-rate effects and noise. IEEE Trans. Nucl. Sci. 15, 455–470 (1968). doi:10.1109/TNS.1968.4324970

    Article  Google Scholar 

  2. C. Imperiale, A. Imperiale, On nuclear spectrometry pulses digital sha** and processing. Measurement 30, 49–73 (2001). doi:10.1016/S0263-2241(00)00057-9

    Article  Google Scholar 

  3. L. Fabris, J.A. Becker, F.S. Goulding et al., Simultaneous ballistic deficit immunity and resilience to parallel noise sources: a new pulse sha** technique. IEEE Trans. Nucl. Sci. 48, 450–454 (2001). doi:10.1109/23.940098

    Article  Google Scholar 

  4. V.T. Jordanov, Real time digital pulse shaper with variable weighting function. Nucl. Instrum. Methods Phys. Res. A 505, 347–351 (2003). doi:10.1016/S0168-9002(03)01094-5

    Article  Google Scholar 

  5. V.T. Jordanov, G.F. Knoll, Digital synthesis of pulse shapes in real time for high resolution radiation spectroscopy. Nucl. Instrum. Methods Phys. Res. A 345, 337–345 (1994). doi:10.1016/0168-9002(94)91011-1

    Article  Google Scholar 

  6. A. Regadio, S. Sanchez-Prieto, M. Prieto et al., Implementation of a real-time adaptive digital sha** for nuclear spectroscopy. Nucl. Instrum. Methods Phys. Res. A 735, 297–303 (2014). doi:10.1016/j.nima.2013.09.063

    Article  Google Scholar 

  7. P.W. Nicholson, Nuclear electronics (Wiley, New York, 1974)

    Google Scholar 

  8. M. Bogovac, C. Csato, Implementation of a truncated cusp filter for real-time digital pulse processing in nuclear spectrometry. Nucl. Instrum. Methods Phys. Res. A 694, 101–106 (2012). doi:10.1016/j.nima.2012.07.042

    Article  Google Scholar 

  9. G.D. Geronimo, P. O’Connor, A. Kandasamy, Analog CMOS peak detect and hold circuits. Part 1. Analysis of the classical configuration. Nucl. Instrum. Methods Phys. Res. A 484, 533–543 (2002). doi:10.1016/S0168-9002(01)02059-9

    Article  Google Scholar 

  10. P. Seller, A.L. Hardie, Q. Morrissey, Noise distribution of a peak track and hold circuit. Nucl. Instrum. Methods Phys. Res. A 696, 129–135 (2012). doi:10.1016/j.nima.2012.08.048

    Article  Google Scholar 

  11. P.S. Lee, C.S. Lee, J.H. Lee, Development of FPGA-based digital signal processing system for radiation spectroscopy. Radiat. Meas. 48, 12–17 (2013). doi:10.1016/j.radmeas.2012.11.018

    Article  Google Scholar 

  12. J.B. Simoes, C.M.B.A. Correia, Pulse processing architectures. Nucl. Instrum. Methods Phys. Res. A 422, 405–410 (1999). doi:10.1016/S0168-9002(98)00992-9

    Article  Google Scholar 

  13. R. Grzywacz, Applications of digital pulse processing in nuclear spectroscopy. Nucl. Instrum. Methods Phys. Res. B 204, 649–659 (2003). doi:10.1016/S0168-583X(02)02146-8

    Article  Google Scholar 

  14. G.F. Knoll, Radiation detection and measurement, 3rd edn. (Wiley, New York, 1999)

    Google Scholar 

  15. V.T. Jordanov, Exponential signal synthesis in digital pulse processing. Nucl. Instrum. Methods Phys. Res. A 670, 18–24 (2012). doi:10.1016/j.nima.2011.12.042

    Article  Google Scholar 

  16. J. Lanchares, O. Garnica, J.L. Risco-Martin et al., Real-time evolvable pulse shaper for radiation measurements. Nucl. Instrum. Methods Phys. Res. A 727, 73–83 (2013). doi:10.1016/j.nima.2013.05.164

    Article  Google Scholar 

  17. W.Y. **ao, Y.X. Wei, X.Y. Ai et al., System simulation of digital pulse spectrometer. Nucl. Instrum. Methods Phys. Res. A 555, 231–235 (2005). doi:10.1016/j.nima.2005.09.027

    Article  Google Scholar 

  18. S. Buzzetti, M. Capou, C. Guazzoni et al., High-speed FPGA-based pulse-height analyzer for high resolution X-ray spectroscopy. IEEE Trans. Nucl. Sci. 52, 854–860 (2005). doi:10.1109/TNS.2005.852699

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Qiang Zeng.

Additional information

This work was supported by the National Natural Science Foundation of China (Nos. 41474159 and 41504139), Sichuan Youth Science and Technology Foundation (No. 2015JQ0035), Sichuan Science and Technology Support Program (No. 2017GZ0390) and the Key Laboratory of Applied Nuclear Techniques in Geosciences Sichuan (No. gnzds2014006).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Yang, J., Zeng, GQ. et al. Implementation of a cusp-like for real-time digital pulse shaper in nuclear spectrometry. NUCL SCI TECH 28, 103 (2017). https://doi.org/10.1007/s41365-017-0248-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41365-017-0248-1

Keywords

Navigation