Log in

Phytopathogenic nematodes associated with olive trees (Olea europaea L.) in North Africa: current status and management prospects

  • Review
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

The olive tree (Olea europaea L.) is a significantly important crop in an ecological, economic, and cultural manner, particularly in North Africa. Plant-parasitic nematodes (PPNs) are dangerous soilborne pathogens, particularly in olive nurseries, contributing to annual economic and yield losses. However, the impact of these nematodes on olive orchards and nurseries has been documented in only a few countries. This review aims to provide (1) an update on the current status of PPNs associated with olive trees in North African countries (Morocco, Algeria, Tunisia, Egypt, and Libya). (2) Reviewing their current diversity in different taxonomic levels and highlighting the frequencies of different taxa causing damage to olive trees, (3) describing their role as root and soil health bioindicators via potential affiliation with edaphic properties, and (4) listing current management strategies against PPNs in olives with a focus on integrated biocontrol methods. Dedicating more research topics to the nematode communities associated with olive trees is extremely important for assuring better management to reach crop** yield sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbas HS, Mohammad RM (2005) Reaction of olive cultivars to Meloidogyne javanica. Comptes Rendus De La Réunion 28(9):141–145

    Google Scholar 

  • Abdel-Baset SH, Khalil AE, Mohamed S (2022) Plant-parasitic nematodes associated with certain fruit trees and vegetable crops in the northeastern Egypt. Egypt J Agron 21(2):110–121

    Google Scholar 

  • Ali N, Chapuis E, Tavoillot J, Mateille T (2014) Plant–parasitic nematodes associated with olive tree (Olea europaea L.) with a focus on the Mediterranean Basin: a review. C R Biol 337(7–8):423–442

    Article  PubMed  Google Scholar 

  • Ali N, Tavoillot J, Mateille T, Chapuis E, Besnard G, El Bakkali A, Palomares-Rius JE (2015) A new root–knot nematode Meloidogyne spartelensis n. sp. (Nematoda: Meloidogynidae) in Northern Morocco. Eur J Plant Pathol 143(1):25–42

    Article  Google Scholar 

  • Ali N, Tavoillot J, Chapuis E, Mateille T (2016) Trend to explain the distribution of root–knot nematodes Meloidogyne spp. associated with olive trees in Morocco. Agric Ecosyst Environ 225:22–32

    Article  Google Scholar 

  • Basim H, Basim E, Ersoy A (2019) Phenotypic and genotypic characterization of Pseudomonas savastanoi pv. savastanoi causing olive knot disease in Turkey. Appl Ecol Environ Res 17(6):14927–14944

    Article  Google Scholar 

  • Belahmar M, Elkfel F, Mihoub M, Abdewahab S, Mateille M, Sellami S (2015) Plant parasitic nematodes associated with olive in Algeria. Acta Phytopathol Entomol Hung 50(2):187–193

    Article  Google Scholar 

  • Bernard GC, Egnin M, Bonsi C (2017) The impact of plant–parasitic nematodes on agriculture and methods of control. Nematol Concepts Diagn Control 10:121–151

    Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol 6:1559

    Article  PubMed  PubMed Central  Google Scholar 

  • Bhai RS, Prameela TP, Vincy K, Biju CN, Srinivasan V, Babu KN (2019) Soil solarization and amelioration with calcium chloride or Bacillus licheniformis–an effective integrated strategy for the management of bacterial wilt of ginger incited by Ralstonia pseudosolanacearum. Eur J Plant Pathol 154(4):903–917

    Article  CAS  Google Scholar 

  • Bing DJ, Beauchesne D, McLaren D, Gan Y, Balasubramanian P, Naeem H (2019) AAC Olive marrowfat pea. Can J Plant Sci 99(5):780–782

    Article  Google Scholar 

  • Bongers T (1990) The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83(1):14–19

    Article  PubMed  Google Scholar 

  • Bongers T, Van der Meulen H, Korthals G (1997) Inverse relationship between the nematode maturity index and plant parasite index under enriched nutrient conditions. Appl Soil Ecol 6(2):195–199

    Article  Google Scholar 

  • Bridge J (1996) Nematode management in sustainable and subsistence agriculture. Annu Rev Phytopathol 34(1):201–225

    Article  CAS  PubMed  Google Scholar 

  • Buarousha N, Adam M, Ehwaeti M (2020) A survey and identification of plant parasitic nematodes associated with wild olive trees Olea europaea var. oleaster in El JabelAlakther Libya. AAU J 6(1):1–13

    Google Scholar 

  • Butler DM, Kokalis-Burelle N, Muramoto J, Shennan C, McCollum TG, Rosskopf EN (2012) Impact of anaerobic soil disinfestation combined with soil solarization on plant–parasitic nematodes and introduced inoculum of soilborne plant pathogens in raised–bed vegetable production. Crop Prot 39:33–40

    Article  CAS  Google Scholar 

  • Cabrera JA, El Borai FE (2018) Nematode parasites of subtropical and tropical fruit tree crops. In: Sikora RA, Coyne D, Hallmann J, Timper P (eds) Plant parasitic nematodes in subtropical and tropical agriculture. CABI, Wallingford, pp 467–492

    Google Scholar 

  • Caccia M, Marro N, Dueñas JR, Doucet ME, Lax P (2018) Effect of the entomopathogenic nematode–bacterial symbiont complex on Meloidogyne hapla and Nacobbus aberrans in short–term greenhouse trials. Crop Prot 114:162–166

    Article  Google Scholar 

  • Calvet C, Pinochet J, Hernández-Dorrego A, Estaún V, Camprubí A (2001) Field microplot performance of the peach–almond hybrid GF–677 after inoculation with arbuscular mycorrhizal fungi in a replant soil infested with root–knot nematodes. Mycorrhiza 10(6):295–300

    Article  Google Scholar 

  • Castillo P, Vovlas N, Nico AI, Jiménez-Díaz RM (1999) Infection of olive trees by Heterodera mediterranea in orchards in southern Spain. Plant Dis 83(8):710–713

    Article  CAS  PubMed  Google Scholar 

  • Castillo P, Vovlas N, Troccoli A (2003) The reniform nematode, Rotylenchulus macrosoma, infecting olive in southern Spain. Nematology 5(1):23–29

    Article  Google Scholar 

  • Castillo P, Nico AI, Azcón-Aguilar C, Del Río RC, Calvet C, Jiménez-Díaz RM (2006) Protection of olive planting stocks against parasitism of root-knot nematodes by arbuscular mycorrhizal fungi. Plant Pathol 55(5):705–713

    Article  Google Scholar 

  • Castillo P, Nico AI, Navas-Cortes JA, Landa BB, Jimenez-Diaz RM, Vovlas N (2010) Plant–parasitic nematodes attacking olive trees and their management. Plant Dis 94(2):148–162

    Article  PubMed  Google Scholar 

  • Castillo P, Pérez Artés E, Gómez Barcina A, Jiménez Díaz RM, Azcón–Aguilar C, Bejarano, J, Caballero Reig JM (2004) Improvement of health and quality in olive plant nursery propagation

  • Chafaa S, Si Bachir A, Boukhadra M, Achi A (2014) Inventory and global stand dynamics of plant parasitic nematodes (Nematoda: Secernentea) of olive trees (Olea europeae) in an arid region of the Northeast of Algeria. J Anim Plant Sci 23(3):3637–3645

    Google Scholar 

  • Ciccarese F, Sasanelli N, Ciccarese A, Ziadi T, Ambrico A, Papajova I (2007) Control of Pyrenochaeta Lycopersici on tomato by ozone disinfestation. In: IOA Conference and Exhibition, Valencia, pp 29–31

  • Cilbircioğlu C (2007) Plant parasitic nematodes associated with Olea europea L. fauna of Turkey. J Agric Urban Entomol 24(4):227–231

    Article  Google Scholar 

  • D’Addabbo T, De Mastro G, Sasanelli N, Di Stefano A, Omidbaigi R (2004) Suppressive action of different cruciferous crops on the root–knot nematode Meloidogyne incognita. Agroindustria 3(3):379–380

    Google Scholar 

  • Decraemer W, Robbins RT (2007) The who, what and where of Longidoridae and Trichodoridae. J Nematol 39(4):295

    PubMed  PubMed Central  Google Scholar 

  • Deepa K, Srinivas P, Samant PK (2017) Soil solarization: an eco–friendly option for management of soilborne plant pathogens in Odisha. Odisha Rev 8:97–101

    Google Scholar 

  • Dillman AR, Sternberg PW (2012) Entomopathogenic nematodes. Curr Biol 22:430–431

    Article  Google Scholar 

  • Doran JW (2002) Soil health and global sustainability: translating science into practice. Agric Ecosyst Environ 88(2):119–127

    Article  Google Scholar 

  • Edongali EA (1989) Plant–parasitic nematodes associated with olive trees in Libya. International nematology network newsletter, USA

    Google Scholar 

  • El Aimani A, Houari A, Laasli SE, Mentag R, Iraqi D, Diria G, Mokrini F (2022) Antagonistic potential of Moroccan entomopathogenic nematodes against root–knot nematodes, Meloidogyne javanica on tomato under greenhouse conditions. Sci Rep 12(1):1–9

    Article  Google Scholar 

  • El SN, Karakaya S (2009) Olive tree (Olea europaea) leaves: potential beneficial effects on human health. Nutr Rev 67(11):632–638

    Article  PubMed  Google Scholar 

  • Ferlian O, Biere A, Bonfante P, Buscot F, Eisenhauer N, Fernandez I, Martinez-Medina A (2018) Growing research networks on mycorrhizae for mutual benefits. Trends Plant Sci 23(11):975–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferris H, Bongers T, de Goede RG (2001) A framework for soil food web diagnostics: extension of the nematode faunal analysis concept. Appl Soil Ecol 18:13–29. https://doi.org/10.1016/S0929-1393(01)00152-4

    Article  Google Scholar 

  • Food and Agriculture Organization Corporate Statistical Database (FAOSTAT) (2022) New Food Balances. Accessed from 16 Dec 2022. http://www.fao.org/faostat/en/#data/FBS

  • González M, Pérez-Sierra A, Sánchez ME (2019) Phytophthora oleae, a new root pathogen of wild olives. Plant Pathol 68(5):901–907

    Article  Google Scholar 

  • Guesmi-Mzoughi I, Archidona-Yuste A, Cantalapiedra-Navarrete C, Regaieg H, Horrigue-Raouani N, Palomares-Rius JE, Castillo P (2016a) First report of the spiral nematode (Nematoda: Hoplolaimidae) from cultivated olive in Tunisia, with additional molecular data on Rotylenchus eximius. J Nematol 48(3):136–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Guesmi-Mzoughi I, Hadj-Naser F, Horrigue-Raouani N (2016b) First report of the plant–parasitic nematode Tylenchorhynchus mediterraneus on olive trees in Tunisia. Tunis J Plant Prot 11(1):171–177

    Google Scholar 

  • Guesmi-Mzoughi I, Archidona-Yuste A, Cantalapiedra-Navarrete C, Palomares-Rius JE, Regaieg H, Horrigue-Raouani N, Castillo P (2017) Integrative identification and molecular phylogeny of dagger and needle nematodes associated with cultivated olive in Tunisia. Eur J Plant Pathol 147(2):389–414

    Article  Google Scholar 

  • Guesmi-Mzoughi I, Troccoli A, Fanelli E, Radicci V, Regaieg H, Hadj-Naser F, Luca FD (2018) First report of the cyst nematode Heterodera mediterranea on olive trees in Tunisia. Tunis J Plant Prot 13(1):69–77

    Google Scholar 

  • Guesmi-Mzoughi I, Tabib M, Sellami F, Hadj-Naser F, Regaieg H, Kallel S, Horrigue-Raouani N (2022) Diversity of plant–parasitic nematode communities infesting olive orchards in Tunisia in relation to agronomic factors. Eur J Plant Pathol 164(4):479–494

    Article  CAS  Google Scholar 

  • Hamza MA, Ferji Z, Ali N, Tavoillot J, Chapuis E, El Oualkadi A, El Mousadik A (2015) Plant–parasitic nematodes associated with olive tree in Southern Morocco. Int J Agric Biol 17:719–726

    Article  Google Scholar 

  • Hamza MA, Ali N, Tavoillot J, Fossati-Gaschignard O, Boubaker H, El Mousadik A, Mateille T (2017a) Diversity of root–knot nematodes in Moroccan olive nurseries and orchards: does Meloidogyne javanica disperse according to invasion processes? BMC Ecol 17(1):1–13

    Google Scholar 

  • Hamza MA, Lakhtar H, Tazi H, Moukhli A, Fossati-Gaschignard O, Miché L, Boubaker H (2017b) Diversity of nematophagous fungi in Moroccan olive nurseries: highlighting prey–predator interactions and efficient strains against root–knot nematodes. Biol Control 114:14–23

    Article  Google Scholar 

  • Hamza MA, Moukhli A, Ferji Z, Fossati-Gaschignard O, Tavoillot J, Ali N, Mateille T (2018) Diversity of plant–parasitic nematode communities associated with olive nurseries in Morocco: origin and environmental impacts. Appl Soil Ecol 124:7–16

    Article  Google Scholar 

  • Ibrahim IK, Mokbel AA (2009) Occurrence and distribution of the root–knot nematodes Meloidogyne spp. and their host plants in Northern Egypt. Egypt J Exp Biol 5:1–7

    CAS  Google Scholar 

  • Ibrahim IKA, Mokbel AA, Handoo ZA (2010) current status of phytoparasitic nematodes and their host plants in Egypt. Nematropica 40:239–262

    Google Scholar 

  • Inserra RN, Vovlas N, Golden AM (1979) Helicotylenchus oleae n. sp. and H. neopaxilli n. sp. (Hoplolaimidae), two new spiral nematodes parasitic on olive trees in Italy. J Nematol 11(1):56

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karuri H (2022) Root and soil health management approaches for control of plant–parasitic nematodes in sub–Saharan Africa. Crop Prot 152:105841

    Article  Google Scholar 

  • Keshari N, Mallikarjun G (2022) Plant parasitic nematodes: a major constraint in fruit production. In: Kaspary TE (ed) Nematodes-recent advances, management and new perspectives. IntechOpen, London, pp 49–77

    Google Scholar 

  • Khan SA, Javed N, Kamran M, Abbas H, Safdar A, Haq ul I (2016) Management of Meloidogyne incognita Race 1 through the use of entomopathogenic nematodes in tomato. Pak J Zool 48(3):763–768

    Google Scholar 

  • Kheira B, Mourad K, Meriem KH (2019) Detection of Pseudomonas syringae pv. Savastanoi, causal agent of olive tuberculosis in two regions of western Algeria (Ain Témouchent and Sig). South Asian J Exp Biol 9(2):64–71

    Article  CAS  Google Scholar 

  • Kruger DHM, Fourie JC, Malan AP (2013) Cover crops with biofumigation properties for the suppression of plant–parasitic nematodes: a review. South Afr J Enol Vitic 34(2):287–295

    Google Scholar 

  • Laasli SE, Mokrini F, Lahlali R, Wuletaw T, Paulitz T, Dababat AA (2022) Biodiversity of nematode communities associated with wheat (Triticum aestivum L.) in Southern Morocco and their contribution as soil health bioindicators. Diversity 14(3):194

    Article  CAS  Google Scholar 

  • Lamberti F, Greco N, Zaouchi H (1975) A nematological survey of date palms and other major crops in Algeria. FAO Plant Prot Bull 23(5):156–160

    Google Scholar 

  • Lehman PS (1994) Dissemination of phytoparasitic nematodes. In: Nematology circular No. 208. Department of agriculture and consumer Services, Florida

  • Liu X, **ang M, Che Y (2009) The living strategy of nematophagous fungi. Mycoscience 50(1):20–25

    Article  Google Scholar 

  • Lopez-Llorca LV, Maciá-Vicente JG, Jansson HB (2008) Mode of action and interactions of nematophagous fungi. In: Ciancio A, Mukerji KG (eds) Integrated management and biocontrol of vegetable and grain crops nematodes. Springer, Dordrecht, pp 51–76

    Chapter  Google Scholar 

  • López-Miranda J, Pérez-Jiménez F, Ros E, De Caterina R, Badimón L, Covas MI, Yiannakouris N (2010) Olive oil and health: summary of the II international conference on olive oil and health consensus report. Nutr Metab Cardiovasc Dis 20(4):284–294

    Article  PubMed  Google Scholar 

  • Marro N, Caccia M, Doucet ME, Cabello M, Becerra A, Lax P (2018) Mycorrhizas reduce tomato root penetration by false root–knot nematode Nacobbus aberrans. Appl Soil Ecol 124:262–265

    Article  Google Scholar 

  • Melero-Vara JM, López-Herrera CJ, Basallote-Ureba MJ, Prados AM, Vela MD, Macias FJ, Talavera M (2012) Use of poultry manure combined with soil solarization as a control method for Meloidogyne incognita in carnation. Plant Dis 96(7):990–996

    Article  CAS  PubMed  Google Scholar 

  • Morton A, García–del–Pino F (2009) Ecological characterization of entomopathogenic nematodes isolated in stone fruit orchard soils of Mediterranean areas. J Invertebr Pathol 102(3):203–213

    Article  PubMed  Google Scholar 

  • Msairi S, Chliyeh M, Touhami AO, El Alaoui A, Selmaoui K, Benkirane R, Douira A (2020) First report of Colletotrichum lupini causing anthracnose disease on the olive fruits in Morocco. Plant Cell Biotechnol Mol Biol 21:1–11

    Google Scholar 

  • Navas-Lopez JF, Cano J, de la Rosa R, Velasco L, Leon L (2020) Genotype by environment interaction for oil quality components in olive tree. Eur J Agron 119:126115

    Article  CAS  Google Scholar 

  • Nico AI, Rapoport HF, Jiménez-Díaz RM, Castillo P (2002) Incidence and population density of plant–parasitic nematodes associated with olive planting stocks at nurseries in southern Spain. Plant Dis 86(10):1075–1079

    Article  CAS  PubMed  Google Scholar 

  • Nico AI, Jiménez-Díaz RM, Castillo P (2003a) Solarization of soil in piles for the control of Meloidogyne incognita in olive nurseries in southern Spain. Plant Pathol 52(6):770–778

    Article  Google Scholar 

  • Nico AI, Jiménez-Díaz RM, Castillo P (2003b) Host suitability of the olive cultivars Arbequina and Picual for plant–parasitic nematodes. J Nematol 35(1):29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nico AI, Jiménez–Dı́az RM, Castillo P (2004) Control of root–knot nematodes by composted agro–industrial wastes in potting mixtures. Crop Prot 23(7):581–587

    Article  Google Scholar 

  • Ntalli N, Caboni P (2017) A review of isothiocyanates biofumigation activity on plant parasitic nematodes. Phytochem Rev 16(5):827–834

    Article  CAS  Google Scholar 

  • Oka Y (2010) Mechanisms of nematode suppression by organic soil amendments—a review. Appl Soil Ecol 44(2):101–115

    Article  Google Scholar 

  • Orlando V, Grove IG, Edwards SG, Prior T, Roberts D, Neilson R, Back M (2020) Root-lesion nematodes of potato: current status of diagnostics, pathogenicity and management. Plant Pathol 69(3):405–417

    Article  Google Scholar 

  • Palomares-Rius JE, Castillo P, Montes-Borrego M, Müller H, Landa BB (2012) Nematode community populations in the rhizosphere of cultivated olive differs according to the plant genotype. Soil Biol Biochem 45:168–171

    Article  CAS  Google Scholar 

  • Palomares-Rius JE, Castillo P, Montes-Borrego M, Navas-Cortes JA, Landa BB (2015) Soil properties and olive cultivar determine the structure and diversity of plant–parasitic nematode communities infesting olive orchards soils in southern Spain. PLoS ONE 10(1):e0116890

    Article  PubMed  PubMed Central  Google Scholar 

  • Palomares-Rius JE, Belaj A, León L, de la Rosa R, Rapoport HF, Castillo P (2019) Evaluation of the phytopathological reaction of wild and cultivated olives as a means of finding promising new sources of genetic diversity for resistance to root–knot nematodes. Plant Dis 103(10):2559–2568

    Article  PubMed  Google Scholar 

  • Pérez-Jiménez M, Besnard G, Dorado G, Hernandez P (2013) Varietal tracing of virgin olive oils based on plastid DNA variation profiling. PLoS ONE 8(8):e70507

    Article  PubMed  PubMed Central  Google Scholar 

  • Poveda J, Abril-Urias P, Escobar C (2020) Biological control of plant–parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Front Microbiol 11:992

    Article  PubMed  PubMed Central  Google Scholar 

  • Qui JJ, Westerdahl BB, Pryor A, Anderson CE (2001) Reduction of root–knot nematode, M. javanica, in soil treated with ozone. Phytopathology 91(6):141

    Google Scholar 

  • Raza MS, Imran M, Yasmin T, Azeem M, Manzoor H, Awais M (2015) Screening of entomopathogenic nematodes for the management of Meloidogyne incognita in brinjal. Int J Biosci 6:19–31

    Article  Google Scholar 

  • Saikkonen K, Mikola J, Helander M (2015) Endophytic phyllosphere fungi and nutrient cycling in terrestrial ecosystems. Curr Sci 109:121–126

    Google Scholar 

  • Saremi H, Okhovvat SM, Ashrafi SJ (2011) Fusarium diseases as the main soil borne fungal pathogen on plants and their control management with soil solarization in Iran. Afr J Biotechnol 10(80):18391–18398

    Article  Google Scholar 

  • Sasanelli N (2009) Olive nematodes and their control. In: Mota MM, Futai K, Vieira P, Ciancio A, Mukerji KG (eds) Integrated management of fruit crops nematodes. Springer, Dordrecht, pp 275–315

    Chapter  Google Scholar 

  • Sasanelli N, Coiro MI, D’addabbo T, Lemos RJ, Ridolfi M, Lamberti F (1999) Reaction of an olive cultivar and an olive rootstock to **phinema index. Nematol Mediterr 27(2):253–256

    Google Scholar 

  • Sayedain FS, Ahmadzadeh M, Fattah-Hosseini S, Bode HB (2021) Soil application of entomopathogenic nematodes suppresses the root–knot nematode Meloidogyne javanica in cucumber. J Plant Dis Prot 128(1):215–223

    Article  CAS  Google Scholar 

  • Verhage A, García-Andrade J, García JM, Azcón-Aguilar C (2009) Priming plant defence against pathogens by arbuscular mycorrhizal fungi. In: Azcón-Aguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas–functional processes and ecological impact. Springer, Berlin, pp 123–135

    Google Scholar 

  • Villenave C, Ba AO, Rabary B (2009) Analyse du fonctionnement biologique du sol par l’étude de la nématofaune: semis direct versus labour sur les hautes terres près d’Antsirabé (Madagascar). Etude Et Gest Des Sols 16(3/4):369–378

    Google Scholar 

  • Vyas RV, Patel B, Maghodia A, Patel DJ (2008) Significance of metabolites of native Xenorhabdus, a bacterial symbiont of Steinernema, for suppression of collar rot and root knot diseases of groundnut. Indian J Biotechnol 7:371–377

    CAS  Google Scholar 

  • Wachira PM, Kimenju JW, Okoth SA, Mibey RK (2009) Stimulation of nematode–destroying fungi by organic amendments applied in management of plant parasitic nematode. Asian J Plant Sci 8(2):153–159

    Article  Google Scholar 

  • Wani KA, Manzoor J, Shuab R, Lone R (2017) Arbuscular mycorrhizal fungi as biocontrol agents for parasitic nematodes in plants. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza—nutrient uptake biocontrol ecorestoration. Springer, Cham, pp 195–210

    Chapter  Google Scholar 

  • Westerdahl BB, McKenry MV (2016) UC IPM Pest Management Guidelines: Olive. IPM Education and Publications, University of California, Davis. UC ANR Publication 3452. Accessed from. 10 Jan 2023. http://ipm.ucanr.edu/PMG/r583200111.html

  • Woods SR, Haydock PPJ (2000) The effect of granular nematicide incorporation depth and potato planting depth on potatoes grown in land infested with the potato cyst nematodes Globodera rostochiensis and G. pallida. Ann Appl Biol 136(1):27–33

    Article  Google Scholar 

  • Yan L, Zhu J, Zhao X, Shi J, Jiang C, Shao D (2019) Beneficial effects of endophytic fungi colonization on plants. Appl Microbiol Biotechnol 103(8):3327–3340

    CAS  PubMed  Google Scholar 

  • Yeates GW, Bongers T (1999) Nematode diversity in agroecosystems. Agric Ecosyst Environ 74(1):113–135

    Article  Google Scholar 

  • Zbakh H, El Abbassi A (2012) Potential use of olive mill wastewater in the preparation of functional beverages: a review. J Funct Foods 4(1):53–65

    Article  CAS  Google Scholar 

  • Zheng YK, Qiao XG, Miao CP, Liu K, Chen YW, Xu LH, Zhao LX (2016) Diversity, distribution and biotechnological potential of endophytic fungi. Ann Microbiol 66(2):529–542

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid Lahlali.

Ethics declarations

Conflict of interest

The authors declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laasli, SE., Mokrini, F., Dababat, A.A. et al. Phytopathogenic nematodes associated with olive trees (Olea europaea L.) in North Africa: current status and management prospects. J Plant Dis Prot 130, 689–706 (2023). https://doi.org/10.1007/s41348-023-00744-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-023-00744-6

Keywords

Navigation