Log in

Crop yield prediction in cotton for regional level using random forest approach

  • Published:
Spatial Information Research Aims and scope Submit manuscript

Abstract

Early and precise estimation of crop yield plays a crucial role in quantitative and financial assessment at field level, to lay down strategic plans for import–export policies for agricultural commodities and to doubling the income of farmers. In this study, a machine learning based random forest (RF) algorithm was used to predicate cotton yield at three distinct times before the actual harvest in the state of Maharashtra in India using R package. Long-term agromet-spectral variables derived from multi-sensor satellites with actual crop yield from 2001 to 2017, were used to generate co-linearity of predictor variables and further, calibrate and validate the RF model. The performance of the RF model was found reliable and faster in predicting the crop yield with the most influencing variables with 69%, 60% and 39% of coefficient of determination (R2) in the final yield for September, December and February months, respectively using CART decision tree and recursive feature elimination method in R programming. Results showed as RF algorithm has the capability to integrate and process a large number of inputs as derived from different satellite modalities, unscaled and non-uniform ground based information, expert knowledge, etc. With high precision and avoid over fitting of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bender, S. F., & van der Heijden, M. G. A. (2015). Soil biota enhance agricultural sustainability by improving crop yield, nutrient uptake and reducing nitrogen leaching losses. Journal of Applied Ecology, 52, 228–239. https://doi.org/10.1111/1365-2664.12351.

    Article  Google Scholar 

  2. Molden, D., Lautze, J., Shah, T., Bin, D., Giordano, M., & Sanford, L. (2010). Governing to grow enough food without enough water—secondbest solutions show the way. International Journal of Water Resources Development, 26(2), 249–263.

    Article  Google Scholar 

  3. FAO. (2016). Sustainable development goals | Food and Agriculture Organization of the United Nations. Retrieved May 10, 2020, from http://www.fao.org/sustainable-development-goals/en/.

  4. Jones, J. W., Antle, J. M., Basso, B., et al. (2017). Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems, 155, 269–288. https://doi.org/10.1016/j.agsy.2016.09.021.

    Article  Google Scholar 

  5. Basso, B., Cammarano, D., & Carfagna, E. (2013, July). Review of crop yield forecasting methods and early warning systems. In Proceedings of the first meeting of the scientific advisory committee of the global strategy to improve agricultural and rural statistics, FAO Headquarters, Rome, Italy (Vol. 41).

  6. Johnston, A. E., Poulton, P. R., White, R. P., & Macdonald, A. J. (2016). Determining the longer term decline in plant-available soil phosphorus from short-term measured values. Soil Use and Management, 32, 151–161.

    Article  Google Scholar 

  7. Frieler, K., Schauberger, B., Arneth, A., et al. (2017). Earth’ s future special section: Understanding the weather signal in national crop-yield variability. Earth’ s Future. https://doi.org/10.1002/eft2.217.

    Article  Google Scholar 

  8. Leng, G., Zhang, X., Huang, M., et al. (2016). The role of climate covariability on crop yields in the conterminous United States. Scientific Reports. https://doi.org/10.1038/srep33160.

    Article  Google Scholar 

  9. Ma, B., & Bruno, B. (2018). Drivers of within-field spatial and temporal variability of crop yield across the US Midwest. Scientific Reports. https://doi.org/10.1038/s41598-018-32779-3.

    Article  Google Scholar 

  10. Hoffmann, H., Zhao, G., Asseng, S., et al. (2016). Impact of spatial soil and climate input data aggregation on regional yield simulations. PLoS ONE. https://doi.org/10.1371/journal.pone.0151782.

    Article  Google Scholar 

  11. Fang, H., Liang, S., & Hoogenboom, G. (2011). Integration of MODIS LAI and vegetation index products with the CSM-CERES-Maize model for corn yield estimation. International Journal of Remote Sensing, 32, 1039–1065. https://doi.org/10.1080/01431160903505310.

    Article  Google Scholar 

  12. Li, Z., Wang, J., Xu, X., et al. (2014). Assimilation of two variables derived from hyperspectral data into the DSSAT-CERES model for grain yield and quality estimation. Ecological Modelling, 291, 15–27. https://doi.org/10.3390/rs70912400.

    Article  Google Scholar 

  13. Li, Y., Zhou, Q., Zhou, J., et al. (2014). Assimilating remote sensing information into a coupled hydrology-crop growth model to estimate regional maize yield in arid regions. Ecological Modelling, 291, 15–27. https://doi.org/10.1016/j.ecolmodel.2014.07.013.

    Article  Google Scholar 

  14. Jackson, R. D., Idso, S. B., Reginato, R. J., & Pinter, P. J. (1981). Canopy temperature as a crop water stress indicator. Water Resources Research, 17, 1133–1138. https://doi.org/10.1029/WR017i004p01133.

    Article  Google Scholar 

  15. Kustas, W. P., & Norman, J. M. (2000). A two-source energy balance approach using directional radiometric temperature observations for sparse canopy covered surfaces. Agronomy Journal, 92(5), 847–854.

    Article  Google Scholar 

  16. Hoogenboom, G. (2000). Contribution of agrometeorology to the simulation of crop production and its applications. Agricultural and Forest Meteorology, 103, 137–157.

    Article  Google Scholar 

  17. Lobell, D. B., & Burke, M. B. (2010). On the use of statistical models to predict crop yield responses to climate change. Agricultural and Forest Meteorology, 150, 1443–1452.

    Article  Google Scholar 

  18. Zhang, J., Tian, H., Yang, J., & Pan, S. (2018). Improving representation of crop growth and yield in the dynamic land ecosystem model and its application to China. Journal of Advances in Modeling Earth Systems, 10, 1680–1707. https://doi.org/10.1029/2017MS001253.

    Article  Google Scholar 

  19. Gerssen-Gondelach, S., Wicke, B., & Faaij, A. (2015). Assessment of driving factors for yield and productivity developments in crop and cattle production as key to increasing sustainable biomass potentials. Food Energy Security, 4, 36–75. https://doi.org/10.1002/FES3.53.

    Article  Google Scholar 

  20. Supit, I., van Diepen, C. A., De Wit, A. J. W., et al. (2012). Assessing climate change effects on European crop yields using the crop growth monitoring system and a weather generator. Agricultural and Forest Meteorology, 164, 96–111. https://doi.org/10.1016/j.agrformet.2012.05.005.

    Article  Google Scholar 

  21. Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and CLIMATE Extremes, 10, 4–10. https://doi.org/10.1016/j.wace.2015.08.001.

    Article  Google Scholar 

  22. van Bussel, L. G. J., Müller, C., van Keulen, H., et al. (2011). The effect of temporal aggregation of weather input data on crop growth models’ results. Agricultural and Forest Meteorology, 151, 607–619. https://doi.org/10.1016/j.agrformet.2011.01.007.

    Article  Google Scholar 

  23. Verma, U., Piepho, H. P., Ogutu, J. O., et al. (2014). Development of zonal agromet models for district-level cotton yield forecasts in Haryana State, India development of zonal agromet models for district-level cotton yield forecasts in Haryana State, India. International Journal of Agricultural and Statistical Sciences, 10(1), 59–65.

    Google Scholar 

  24. Pinke, Z., & Lövei, G. L. (2017). Increasing temperature cuts back crop yields in Hungary over the last 90 years. Global Change Biology, 23, 5426–5435.

    Article  Google Scholar 

  25. Kern, A., Barcza, Z., Marjanovi, H., et al. (2018). Statistical modelling of crop yield in Central Europe using climate data and remote sensing vegetation indices. Agricultural and Forest Meteorology, 261, 300–320. https://doi.org/10.1016/j.agrformet.2018.06.009.

    Article  Google Scholar 

  26. Setiyono, T., Nelson, A., Holecz, F. (2014). Remote sensing based crop yield monitoring and forecasting. Expert Meeting on Crop Monitoring for Improved Food Security. http://www.fao.org/fileadmin/templates/rap/files/Project/Expert_Meeting__17Feb2014_/P2-4_Setiyono_2014_Remote-Sensing_based_Crop_Yield_Monitoring.pdf.

  27. Huang, J., Gómez-Dans, J. L., Huang, H., et al. (2019). Assimilation of remote sensing into crop growth models: Current status and perspectives. Agricultural and Forest Meteorology, 276–277, 107609. https://doi.org/10.1016/j.agrformet.2019.06.008.

    Article  Google Scholar 

  28. Doraiswamy, P. C., Moulin, S., Cook, P. W., & Stern, A. (2003). Crop yield assessment from remote sensing. Photogrammetric Engineering & Remote Sensing, 69, 665–674.

    Article  Google Scholar 

  29. Zhao, D., Huang, L., Li, J., & Qi, J. (2007). A comparative analysis of broadband and narrowband derived vegetation indices in predicting LAI and CCD of a cotton canopy. ISPRS Journal of Photogrammetry and Remote Sensing, 62, 25–33. https://doi.org/10.1016/j.isprsjprs.2007.01.003.

    Article  Google Scholar 

  30. Sakamoto, T., Gitelson, A. A., & Arkebauer, T. J. (2013). MODIS-based corn grain yield estimation model incorporating crop phenology information. Remote Sensing of Environment, 131, 215–231. https://doi.org/10.1016/j.rse.2012.12.017.

    Article  Google Scholar 

  31. Prasad, A. K., Chai, L., Singh, R. P., & Kafatos, M. (2006). Crop yield estimation model for Iowa using remote sensing and surface parameters. International Journal of Applied Earth Observation and Geoinformation, 8, 26–33.

    Article  Google Scholar 

  32. Gusso, A., Ducati, J. R., Veronez, M. R., et al. (2013). Spectral model for soybean yield estimate using MODIS/EVI data. International Journal of Geosciences, 04, 1233–1241. https://doi.org/10.4236/ijg.2013.49117.

    Article  Google Scholar 

  33. Petersen, L. (2018). Real-time prediction of crop yields from MODIS relative vegetation health: A continent-wide analysis of Africa. Remote Sensing, 10, 1726. https://doi.org/10.3390/rs10111726.

    Article  Google Scholar 

  34. Landau, S., Mitchell, R. A. C., Barnett, V., et al. (2000). A parsimonious, multiple-regression model of wheat yield response to environment. Agricultural and Forest Meteorology, 101, 151–166. https://doi.org/10.1016/S0168-1923(99)00166-5.

    Article  Google Scholar 

  35. Sheehy, J. E., Mitchell, P. L., & Ferrer, A. B. (2006). Decline in rice grain yields with temperature: Models and correlations can give different estimates. Field Crops Research, 98, 151–156. https://doi.org/10.1016/j.fcr.2006.01.001.

    Article  Google Scholar 

  36. Cooner, A. J., Shao, Y., & Campbell, J. B. (2016). Detection of urban damage using remote sensing and machine learning algorithms: Revisiting the 2010 Haiti earthquake. Remote Sensing. https://doi.org/10.3390/rs8100868.

    Article  Google Scholar 

  37. Lawler, A. J. D. B. (2006). Predicting climate-induced range shifts: Model differences and model reliability. Global Change Biology, 12, 1568–1584. https://doi.org/10.1111/j.1365-2486.2006.01191.x.

    Article  Google Scholar 

  38. Cutler, D. R., Edwards, T. C., Beard, K. H., et al. (2007). Random forests for classification in ecology. Ecology, 88, 2783–2792. https://doi.org/10.1890/07-0539.1.

    Article  Google Scholar 

  39. Belgiu, M., & Drăgu, L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS Journal of Photogrammetry and Remote Sensing, 114, 24–31. https://doi.org/10.1016/j.isprsjprs.2016.01.011.

    Article  Google Scholar 

  40. Vincenzi, S., Zucchetta, M., Franzoi, P., et al. (2011). Application of a random forest algorithm to predict spatial distribution of the potential yield of Ruditapes philippinarum in the Venice lagoon, Italy. Ecological Modelling, 222, 1471–1478. https://doi.org/10.1016/j.ecolmodel.2011.02.007.

    Article  Google Scholar 

  41. Mutanga, O., Adam, E., & Cho, M. A. (2012). High density biomass estimation for wetland vegetation using worldview-2 imagery and random forest regression algorithm. International Journal of Applied Earth Observation and Geoinformation, 18, 399–406. https://doi.org/10.1016/j.jag.2012.03.012.

    Article  Google Scholar 

  42. Fukuda, S., Spreer, W., Yasunaga, E., et al. (2013). Random Forests modelling for the estimation of mango (Mangifera indica L. cv. Chok Anan) fruit yields under different irrigation regimes. Agricultural Water Management, 116, 142–150. https://doi.org/10.1016/j.agwat.2012.07.003.

    Article  Google Scholar 

  43. Jeong, J. H., Resop, J. P., Mueller, N. D., & Fleisher, D. H. (2016). Random forests for global and regional crop yield predictions. PLoS ONE. https://doi.org/10.1371/journal.pone.0156571.

    Article  Google Scholar 

  44. Climate Maharashtra: Temperature, climate graph, Climate table for Maharashtra—Climate-Data.org. Retrieved Jun 27, 2019, from https://en.climate-data.org/asia/india/maharashtra-747/.

  45. (2019) Directorate of Economics And Statistics, Ministry of Agriculture, GoI. Retrieved July 17, 2019, from https://eands.dacnet.nic.in/.

  46. (2019) LP DAAC—AppEEARS. Retrieved May 13, 2019, from https://lpdaac.usgs.gov/tools/appeears/.

  47. Kern, A., Marjanović, H., Dobor, L., Anić, M., Hlásny, T., & Barcza, Z. (2017). Identification of years with extreme vegetation State in Central Europe based on remote sensing and meteorological data. SEEFOR, 8, 1–20. https://doi.org/10.15177/seefor.17-05.

    Article  Google Scholar 

  48. Kern, A., Marjanović, H., Barcza, Z., et al. (2016). Evaluation of the quality of NDVI3g dataset against collection 6 MODIS NDVI in Central Europe between 2000 and 2013. Remote Sensing, 8, 955. https://doi.org/10.3390/rs8110955.

    Article  Google Scholar 

  49. Kogan, F. N. (1995). Application of vegetation index and brightness temperature for drought detection. Advances in Space Research, 15, 91–100.

    Article  Google Scholar 

  50. (2012) SPI User Guide.

  51. (2017) Package “SPEI.” https://doi.org/10.1175/2009JCLI2909.1.

  52. ECMWF | ERA Interim, Daily. Retrieved May 1, 2019, from https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/.

  53. Liaw, A., & Wiener, M. (2018). randomForest Title Breiman and Cutler’s random forests for classification and regression. R Package Version. https://doi.org/10.1023/A:1010933404324.

    Article  Google Scholar 

  54. Breiman, L., Cutler, A. (2004). Random forest-manual. https://www.stat.berkeley.edu/~breiman/RandomForests/cc_manual.htm.

  55. Guan, H., Li, J., Chapman, M., et al. (2013). Integration of orthoimagery and lidar data for object-based urban thematic map** using random forests. International Journal of Remote Sensing, 34, 5166–5186. https://doi.org/10.1080/01431161.2013.788261.

    Article  Google Scholar 

  56. Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

    Article  Google Scholar 

  57. Ballesteros, R., Ortega, J. F., Hernandez, D., et al. (2018). Combined use of agro-climatic and very high-resolution remote sensing information for crop monitoring. International Journal of Applied Earth Observation and Geoinformation, 72, 66–75. https://doi.org/10.1016/j.jag.2018.05.019.

    Article  Google Scholar 

  58. Chlingaryan, A., Sukkarieh, S., & Whelan, B. (2018). Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Computers and Electronics in Agriculture, 151, 61–69.

    Article  Google Scholar 

  59. Srinet, R., Nandy, S., & Patel, N. R. (2019). Estimating leaf area index and light extinction coefficient using random forest regression algorithm in a tropical moist deciduous forest, India. Ecological Informatics, 52, 94–102. https://doi.org/10.1016/j.ecoinf.2019.05.008.

    Article  Google Scholar 

  60. Segal, M. R. (2003). UC San Francisco Recent Work Title Machine Learning Benchmarks and Random Forest Regression Publication Date Machine Learning Benchmarks and Random Forest Regression.

Download references

Acknowledgements

This research was carried out as a part of SUFALAM project funded by ISRO. The authors are very much thankful to the Director, Indian Institute of Remote Sensing, Dehradun for his invaluable support during the research work. The authors are also very much thankful to the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Prasad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasad, N.R., Patel, N.R. & Danodia, A. Crop yield prediction in cotton for regional level using random forest approach. Spat. Inf. Res. 29, 195–206 (2021). https://doi.org/10.1007/s41324-020-00346-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41324-020-00346-6

Keywords

Navigation