Log in

Development of robotic hand tactile sensing system for distributed contact force sensing in robotic dexterous multimodal gras**

  • Regular Paper
  • Published:
International Journal of Intelligent Robotics and Applications Aims and scope Submit manuscript

Abstract

Perceiving distributed tactile information during robotic dexterous gras** process is essential to improve its intelligence and automation. This paper presents a tactile sensing system for a multi-fingered robotic hand, and used to detect distributed contact forces andtactile information during robotic hand dexterous multimodal gras** applications. The tactile sensing system relies on the design of tactile sensors with multiple sensing units and is integrated onto robotic thumb, index and middle fingers, respectively. For robotic dexterous gras**, six types of gras** modes are selected and performed objects’ gras** experiments. Using the developed robotic hand tactile sensing system, the generated contact forces during gras** processes are recorded. Through analyzing the robotic hand grasp actions in each gras** mode, the characteristics of the detected tactile forces can be studied and compared, which can be used as the factor to further distinguish the different gras** modes. Therefore, our developed robotic hand tactile sensing system can provide the possibility to accurately measure the distributed contact forces during robotic hand dexterous manipulation applications, and be used for analyzing the relationship between tactile information characteristics and gras** mode movements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • An, B.W., Heo, S., Ji, S., Bien, F., Park, J.U.: Transparent and flexible fingerprint sensor array with multiplexed detection of tactile pressure and skin temperature. Nat. Commun. 9(1), 1–10 (2018)

    Article  Google Scholar 

  • Cini, F., Ortenzi, V., Corke, P., Controzzi, M.: On the choice of grasp type and location when handing over an object. Sci. Robot. 4(27), eaau9757-13 (2019)

    Article  Google Scholar 

  • Deng, H., Zhang, Y., Duan, X.G.: Wavelet transformation-based fuzzy reflex control for prosthetic hands to prevent slip. IEEE Trans. Industr. Electron. 64(5), 3718–3726 (2017)

    Article  Google Scholar 

  • Deng, H., Luo, H., Wang, R., Zhang, Y.: Gras** force planning and control for tendon-driven anthropomorphic prosthetic hands. J. Bionic Eng. 15(5), 795–804 (2018)

    Article  Google Scholar 

  • Dong, W.T., Wang, Y.H., Zhou, Y., Bai, Y.Z., Ju, Z.J., Guo, J.J., Gu, G.Y., Bai, K., Ouyang, G.X., Chen, S.M., Zhang, Q., Huang, Y.A.: Soft human-machine interfaces: design, sensing and stimulation. Int. J. Intell. Robot. Appl. 2(3), 313–338 (2018)

    Article  Google Scholar 

  • Fang, B., Jia, S.D., Guo, D., Xu, M.H., Wen, S.H., Sun, F.C.: Survey of imitation learning for robotic manipulation. Int. J. Intell. Robot. Appl. 3(4), 362–369 (2019)

    Article  Google Scholar 

  • Feix, T., Romero, J., Schmiedmayer, H.B., Dollar, A.M., Kragic, D.: The GRASP taxonomy of human grasp types. IEEE Trans. Hum-Mach. Syst. 46(1), 66–77 (2016)

    Article  Google Scholar 

  • He, L., Lu, Q., Abad, S.A., Rojas, N., Nanayakkara, T.: Soft fingertips with tactile sensing and active deformation for robust gras** of delicate objects. IEEE Robot. Automat. Lett. 5(2), 2714–2721 (2020)

    Article  Google Scholar 

  • Hu, D., **ong, C.H., Liu, M.J.: Exploring the existence of better hands for manipulation than the human hand based on hand proportions. J. Theor. Biol. 440, 100–111 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  • Huh, T.M., Choi, H., Willcox, S., Moon, S., Cutkosky, M.R.: Dynamically reconfigurable tactile sensor for robotic manipulation. IEEE Robot. Automat. Lett. 5(2), 2562–2569 (2020)

    Article  Google Scholar 

  • Jiao, C.L., Lian, B.B., Wang, Z., Song, Y.M., Sun, T.: Visual-tactile object recognition of a soft gripper based on faster Region-based Convolutional Neural Network and machining learning algorithm. Int. J. Adv. Robot. Syst. 17(5), 1–13 (2020)

    Article  Google Scholar 

  • Kang, S.B., Ikeuchi, K.: Toward automatic robot instruction from perception - map** human grasps to manipulator grasps. IEEE Trans. Robot. Autom. 13(1), 81–95 (1997)

    Article  Google Scholar 

  • Laffranchi, M., Boccardo, N., Traverso, S., Lombardi, L., Canepa, M., Lince, A., Semprini, M., Saglia, J.A., Naceri, A., Sacchetti, R., Gruppioni, E., De Michieli, L.: The Hannes hand prosthesis replicates the key biological properties of the human hand. Sci. Robot. 5(46), eabb0467-15 (2020)

    Article  Google Scholar 

  • Liu, Q., Qian, G.M., Meng, W., Ai, Q.S., Yin, C.Y., Fang, Z.Y.: A new IMMU-based data glove for hand motion capture with optimized sensor layout. Int. J. Intell. Robot. Appl. 3(1), 19–32 (2019)

    Article  Google Scholar 

  • Mahler, J., Matl, M., Satish, V., Danielczuk, M., DeRose, B., McKinley, S., Goldberg, K.: Learning ambidextrous robot gras** policies. Sci. Robot. 4(26), eaau4984-11 (2019)

    Article  Google Scholar 

  • Mannsfeld, S.C.B., Tee, B.C.K., Stoltenberg, R.M., Chen, C.V.H.H., Barman, S., Muir, B.V.O., Sokolov, A.N., Reese, C., Bao, Z.: Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 9(10), 859–864 (2010)

    Article  Google Scholar 

  • Ozawa, R., Tahara, K.: Grasp and dexterous manipulation of multi-fingered robotic hands: a review from a control view point. Adv. Robot. 31(19–20), 1030–1050 (2017)

    Article  Google Scholar 

  • Pinto, T., Cai, L., Wang, C., Tan, X.B.: CNT-based sensor arrays for local strain measurements in soft pneumatic actuators. Int. J. Intell. Robot. Appl. 1(2), 157–166 (2017)

    Article  Google Scholar 

  • Sundaram, S., Kellnhofer, P., Li, Y., Zhu, J.Y., Torralba, A., Matusik, W.: Learning the signatures of the human grasp using a scalable tactile glove. Nature 569(7758), 698–702 (2019)

    Article  Google Scholar 

  • Sundaralingam, B., Lambert, A. S., Handa, A., Boots, B., Hermans, T., Birchfield, S., Ratliff, N., Fox, D.: Robust learning of tactile force estimation through robot interaction. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 9035–9042 (2019)

  • Wang, S.H., Xu, J., Wang, W.C., Wang, G.J.N., Rastak, R., Molina-Lopez, F., Chung, J.W., Niu, S.M., Feig, V.R., Lopez, J., Lei, T., Kwon, S.K., Kim, Y., Foudeh, A.M., Ehrlich, A., Gasperini, A., Yun, Y., Murmann, B., Tok, J.B.H., Bao, Z.A.: Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature 555(7694), 83–88 (2018)

    Article  Google Scholar 

  • Wang, Y., Wu, X., Mei, D., Zhu, L., Chen, J.: Flexible tactile sensor array for distributed tactile sensing and slipdetection in robotic hand gras**. Sens. Actuator A Phys. 297, 111512–111513 (2019)

    Article  Google Scholar 

  • Wang, Y., Chen, J., Mei, D.: Recognition of surface texture with wearable tactile sensor array: a pilot study. Sens. Actuators, A 307(2020), 111972–112013 (2020)

    Article  Google Scholar 

  • Wang, Y., Chen, Z., Mei, D., Zhu, L., Wang, S., Fu, X.: Highly sensitive and flexible tactile sensor with truncated pyramid-shaped porous graphene/silicone rubber composites for human motion detection. Compos. Sci. Technol. 217(2022), 109078–109110 (2022)

    Article  Google Scholar 

  • Won, S.M., Wang, H., Kim, B.H., Lee, K., Jang, H., Kwon, K., Han, M., Crawford, K.E., Li, H., Lee, Y., Yuan, X., Kim, S.B., Oh, Y.S., Jang, W.J., Lee, J.Y., Han, S., Kim, J., Wang, X., **e, Z., Zhang, Y., Huang, Y., Rogers, J.A.: Multimodal sensing with a three-dimensional piezoresistive structure. ACS Nano 13(10), 10972–10979 (2019)

    Article  Google Scholar 

  • **e, R., Hou, S., Chen, Y., Zhang, K., Zou, B., Liu, Y., Liang, J., Guo, S., Li, H., Zheng, B., Li, S., Zhang, W., Wu, J., Huo, F.: Leather-based strain sensor with hierarchical structure for motion monitoring. Adv. Mater. Technol. 4(10), 1900442–1900448 (2019)

    Article  Google Scholar 

  • ** functions. IEEE Trans. Robot. 32(3), 652–671 (2016)

    Article  Google Scholar 

  • Xue, Y., Ju, Z., **ang, K., Chen, J., Liu, H.: Multimodal human hand motion sensing and analysis-a review. IEEE Trans. Cogn. Dev. Syst. 11(2), 162–175 (2019)

    Article  Google Scholar 

  • Zhang, T., Jiang, L., Liu, H.: Design and functional evaluation of a dexterous myoelectric hand prosthesis with biomimetic tactile sensor. IEEE Trans. Neural Syst. Rehabil. Eng. 26(7), 1391–1399 (2018)

    Article  Google Scholar 

  • Zhao, X.H., Ma, S.N., Long, H., Yuan, H.Y., Tang, C.Y., Cheng, P.K., Tsang, Y.H.: Multifunctional sensor based on porous carbon derived from metal-organic frameworks for real time health monitoring (vol 10, pg 3986, 2018). ACS Appl. Mater. Interfaces. 10(12), 10599–10599 (2018)

    Article  Google Scholar 

  • Zhu, L., Wang, Y., Mei, D., Wu, X.: Highly sensitive and flexible tactile sensor based on porous graphene sponges for distributed tactile sensing in monitoring human motions. J. Microelectromech. Syst. 28(1), 154–163 (2019)

    Article  Google Scholar 

  • Zhu, M.L., He, T.Y.Y., Lee, C.K.: Technologies toward next generation human machine interfaces: from machine learning enhanced tactile sensing to neuromorphic sensory systems. Appl. Phys. Rev. 7(3), 031305–031337 (2020)

    Article  Google Scholar 

  • Zhuang, K.Z., Sommer, N., Mendez, V., Aryan, S., Formento, E., D’Anna, E., Artoni, F., Petrini, F., Granata, G., Cannaviello, G., Raffoul, W., Billard, A., Micera, S.: Shared human–robot proportional control of a dexterous myoelectric prosthesis. Nat. Mach. Intell. 1(9), 400–411 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Zhejiang Provincial Funds for Distinguished Young Scientists of China (LR19E050001), National Natural Science Foundation of China (52175522), Key Research and Development Program of Zhejiang Province (2022C01041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yancheng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, C., Wang, Y., Mei, D. et al. Development of robotic hand tactile sensing system for distributed contact force sensing in robotic dexterous multimodal gras**. Int J Intell Robot Appl 6, 760–772 (2022). https://doi.org/10.1007/s41315-022-00260-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41315-022-00260-0

Keywords

Navigation