Log in

What problem-solving knowledge is required in mathematical teaching? A curricular approach

  • Research article
  • Published:
Curriculum Perspectives Aims and scope Submit manuscript

Abstract

This study explores the knowledge required for teachers to teach problem solving (PS) from a Primary Mathematics Curriculum Guidelines perspective. It analyzes six countries’ curricular guidelines for primary education using the Mathematical Problem-Solving Knowledge for Teaching model. To identify the PS knowledge required in each education system, the country guidelines were selected based on the country’s results in the 2012 Programme for International Student Assessment (PISA) survey. Data analysis revealed that PS-related knowledge included in the curricula is broad and challenging for teachers. Further, it is not always coherent and research-based. More specifically, the findings show that curricular guidelines emphasize problem classification and solving processes. Our analysis supports the conclusion that particularities in teachers’ knowledge become visible when we view it from the perspective of PS rather than of mathematical concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agre, G. P. (1982). The concept of problem. Educational Studies, 13(2), 121–142.

    Article  Google Scholar 

  • Ball, D. L., Hill, H. C., & Bass, H. (2005). Knowing mathematics for teaching: Who knows mathematics well enough to teach third grade, and how can we decide? American Educator, 29(1), 14–46.

    Google Scholar 

  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407.

    Article  Google Scholar 

  • Bardin, L. (1996). Análisis de contenido. Akal.

    Google Scholar 

  • Boote, S. K., & Boote, D. N. (2018). ABC problem in elementary mathematics education: Arithmetic before comprehension. Journal of Mathematics Teacher Education, 21(2), 99–122.

    Article  Google Scholar 

  • Bromme, R. (1994). Beyond subject matter: A psychological topology of teachers’ professional knowledge. In R. Biehler, R. Scholz, R. Sträber, & B. Winkelmann (Eds.), Didactics of mathematics as a scientific discipline (pp. 73–88). Kluwer Academic Publishers.

    Google Scholar 

  • Carrillo, J., Climent, N., Montes, M., Contreras, L. C., Flores-Medrano, E., Escudero-Ávila, D., … Muñoz-Catalán, M. C. (2018). The mathematics teacher’s specialised knowledge (MTSK) model. Research in Mathematics Education, 20(3), 236–253.

  • Chapman, O. (2008). Instructional practices to facilitate prospective mathematics teachers’ learning of problem solving for teaching. In M. Santos-Trigo & Y. Schimizu (Eds.), ICME-11. Topic study group 19. Research and development in problem solving in mathematics education (pp. 158–167). ICME.

    Google Scholar 

  • Chapman, O. (2012). Practice-based conception of secondary school teachers’ mathematical problem-solving for teaching. In En T.-Y. Tso (Ed.), Proceedings of the 36th conference of the international group for the psychology of mathematics education (Vol. 2, pp. 107–114). PME.

  • Chapman, O. (2015). Mathematics teachers’ knowledge for teaching problem solving. LUMAT, 3(1), 19–36.

    Article  Google Scholar 

  • Chapman, O. (2016). An exemplary mathematics teacher’s ways of holding problem-solving knowledge for teaching. In C. Csíkos, A. Rausch, & J. Szitányi (Eds.), Proceedings of the 40th conference of the PME (Vol. 2, pp. 139–146). PME.

    Google Scholar 

  • Christou, C., Mousoulides, N., Pittalis, M., Pitta-Pantazi, D., & Sriraman, B. (2005). An empirical taxonomy of problem posing processes. ZDM, 37(3), 149–158.

    Google Scholar 

  • Consejo Federal de Educación (2011a). Núcleos de aprendizajes prioritarios. 1° ciclo Educación Primaria. 1°, 2° y 3° Años. Ministerio de Educación de Argentina.

  • Consejo Federal de Educación (2011b). Núcleos de aprendizajes prioritarios. 2° ciclo Educación Primaria. 4°, 5° y 6° Años. Ministerio de Educación de Argentina.

  • Creswell, J. W. (2013). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). SAGE.

    Google Scholar 

  • Curriculum Planning and Development Division. (2007). Mathematics syllabus primary. Singapore Ministry of Education.

    Google Scholar 

  • Deng, Z. (2018). Pedagogical content knowledge reconceived: Bringing curriculum thinking into the conversation on teachers’ content knowledge. Teaching and Teacher Education, 72, 155–164.

    Article  Google Scholar 

  • Depaepe, F., De Corte, E., & Verschaffel, L. (2010). Teachers’ approaches towards word problem solving: Elaborating or restricting the problem context. Teaching and Teacher Education, 26(2), 152–160.

    Article  Google Scholar 

  • Foster, C., Wake, G., & Swan, M. (2014). Mathematical knowledge for teaching problem solving: Lessons from lesson study. In S. Oesterle, P. Liljedahl, C. Nicol, & D. Allan (Eds.), Proceedings of the joint meeting of PME 38 and PME-NA 36 (Vol. 3, pp. 97–104). PME.

    Google Scholar 

  • Grønmo, L. S., Lindquist, M., & Arora, A. (2014). TIMSS advanced 2015 mathematics framework. In I. V. S. Mullis & M. O. Martin (Eds.), TIMSS advanced 2015 assessment frameworks (pp. 9–16). TIMMS & PIRLS International Study Center, Lynch School of Education, Boston College and IEA.

    Google Scholar 

  • Hernández, R., Fernández, C., & Baptista, P. (2014). Metodología de la investigación (6th ed.). McGraw-Hill Education.

    Google Scholar 

  • Krippendorff, K. (2004). Content analysis: An introduction to its methodology (2nd ed.). Sage.

    Google Scholar 

  • Kuckartz, U. (2019). Qualitative text analysis: A systematic approach. In G. Kaiser & N. Presmeg (Eds.), Compendium for early career researchers in mathematics education (pp. 181–198). Springer.

    Chapter  Google Scholar 

  • Lester, F. K. (2013). Thoughts about research on mathematical problem-solving instruction. The Mathematics Enthusiast, 10(1&2), 245–278.

    Article  Google Scholar 

  • Lester, F. K., & Cai, J. (2016). Can mathematical problem solving be taught? Preliminary answers from 30 years of research. In P. Felmer, E. Pehkonen, & J. Kilpatrick (Eds.), Posing and solving mathematical problems (pp. 117–135). Springer.

    Chapter  Google Scholar 

  • Lin, F.-L., & Rowland, T. (2016). Pre-service and in-service mathematics teachers’ knowledge and professional development. In Á. Gutiérrez, G. C. Leder, & P. Boero (Eds.), The second handbook of research on the psychology of mathematics education (pp. 483–520). Sense.

    Chapter  Google Scholar 

  • Ministerio de Educación (2012). Bases curriculares Educación Básica. Unidad de Currículum y Evaluación.

  • Ministerio de Educación y Ciencia (2014). Real Decreto 126/2014, de 28 de febrero, por el que se establece el currículo básico de la Educación Primaria, BOE, (52), 19349–19420.

  • National Core Curriculum for Basic Education (2004). National core curriculum for basic education intended for pupils in compulsory education. Finland National Board of Education.

  • NCTM (1980). An agenda for action: Recommendations for school mathematics of the l980’s. Author.

  • NCTM (2000). Principles and standards for school mathematics. Author.

  • NCTM. (2010). Making it happen. A guide to interpreting and implementing common core state standards for mathematics. Author.

  • O’Shea, J., & y Leavy, A. M. (2013). Teaching mathematical problem-solving from an emergent constructivist perspective: the experiences of Irish primary teachers. Journal of Mathematics Teacher Education, 16(4), 293–318.

    Article  Google Scholar 

  • OECD. (2013). Draft PISA 2015 mathematics framework. Autor.

    Google Scholar 

  • OECD. (2014). PISA 2012 results: What students know and can do. Autor.

    Google Scholar 

  • Piñeiro, J. L. (2019). Conocimiento profesional de maestros en formación inicial sobre resolución de problemas en matemáticas (Doctoral dissertation). University of Granada. http://hdl.handle.net/10481/57450.

  • Pólya, G. (1945). How to solve it. University Press.

    Book  Google Scholar 

  • Rico, L. (2007). La competencia matemática en PISA. PNA, 1(2), 47–66.

    Google Scholar 

  • Rowland, T., Huckstep, P., & Thwaites, A. (2005). Elementary teachers’ mathematics subject knowledge: The knowledge quartet and the case of Naomi. Journal of Mathematics Teacher Education, 8(3), 255–281.

    Article  Google Scholar 

  • Safrudiannur, & Rott, B. (2019). The different mathematics performances in PISA 2012 and a curricula comparison: Enriching the comparison by an analysis of the role of problem solving in intended learning processes. Mathematics Education Research Journal, 31, 175–195.

    Article  Google Scholar 

  • Schmidt, W. H., McKnight, C. C., Valverde, G. A., Houang, R. T., & Wiley, D. E. (1997). Many visions, many aims. A cross-national investigation of curricular intentions in school mathematics (Vol. 1). Kluwer Academic.

  • Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition and sense making in mathematics. In D. Grows (Ed.), Handbook for research on mathematics teaching and learning (pp. 334–370). Macmillan.

    Google Scholar 

  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.

    Article  Google Scholar 

  • Silver, E. A. (1994). On mathematical problem posing. For the Learning of Mathematics, 14(1), 19–28.

    Google Scholar 

  • Stacey, K. (2005). The place of problem solving in contemporary mathematics curriculum documents. The Journal of Mathematical Behavior, 24(3–4), 341–350.

    Article  Google Scholar 

  • Weber, K., & Leikin, R. (2016). Recent advances in research on problem solving and problem posing. In Á. Gutiérrez, G. C. Leder, & P. Boero (Eds.), The second handbook of research on the psychology of mathematics education (pp. 353–382). Routledge.

    Google Scholar 

Download references

Funding

This work was supported by the Spanish Ministry of Science and Innovation’s National R&D + I Plan, funded under project PGC2018–095765-B-100; and the Government of Chile’s National Scientific and Technological Research Commission (CONICYT) [grant number 72170314].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Luis Piñeiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piñeiro, J.L., Castro-Rodríguez, E. & Castro, E. What problem-solving knowledge is required in mathematical teaching? A curricular approach. Curric Perspect 42, 1–12 (2022). https://doi.org/10.1007/s41297-021-00152-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41297-021-00152-6

Keywords

Navigation