Log in

Landslides triggered by the August 2020 Mw 5.0 Mila, Algeria, earthquake: spatial distribution and susceptibility map**

  • Original Paper
  • Published:
Euro-Mediterranean Journal for Environmental Integration Aims and scope Submit manuscript

Abstract

About 270 landslides have been triggered in the Mila region (northeast Algeria) linked to the 7 August 2020 Mw 5 earthquake, but they have not been analyzed and mapped throughout the region. As a consequence, the potential link between the earthquake, faults, and the set of large landslides registered subsequently in the same region has not yet been studied, understood, and mapped. However, the geology and morphology of large and deep landslides lying dormant in the region, which could be reactivated in case of seismic activity, are located close to faults and present the same morphological characteristics as landslides triggered by the main shock. The aim of this paper is to present the relationship between the seismotectonic and large landslide distribution and to compare landslide susceptibility maps by the application of geographical information system (GIS)-based frequency ratio (FR) and weighting of evidence (Wi) statistical methods. A landslide inventory map was developed using interferometric synthetic aperture radar (InSAR) post-seismic deformation maps, aerial photographs, and field survey investigations. The analysis of the spatial distribution of large landslides, together with information on aftershocks and electrical resistivity tomography (ERT) sections, shows that the spatial distribution of large landslides is consistent with epicenter locations along a NW–SE axis and two NE–SW axes. Evidence of NE–SW faults related to a N120E striking dextral strike–slip fault is also discussed. Various factors are shown to be associated with landslide occurrence, such as lithology, distance to fault, slope degree, slope aspect, distance to rivers, drainage density, elevation, rainfall, peak ground acceleration (PGA) in soil and rock estimated according to the Mila earthquake (Mw = 5), and epicentral distance. The area under the curve (AUC) value of the receiver operating characteristics (ROC) curve approach was used to confirm and validate the accuracy of the two models. The obtained AUC values were 89.05% and 87.57% for the FR and Wi models, respectively, indicating high levels of prediction accuracy. The large landslides triggered in the Mila region are found to be directly related to the seismotectonic structure, and a seismic sequence interspersed with moderate earthquakes over a short period. The results are presented as a landslide susceptibility map showing areas highly vulnerable to landslides and those with moderate and low vulnerability. It is expected that this will be very helpful for landslide prevention and infrastructure planning in Mila City.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  • Aguemoune S, Chaib I, Hallal N and Ayadi A (2022) A robust protocol for map** triggered landslides using space borne sensors: a case of mila triggered landslides. Deuxième Edition du Séminaire national sur les Géorisques en Algérie. Mila Du 06 au 08 Novembre 2022.

  • Althuwaynee OF, Pradhan B, Lee S (2012) Application of an evidential belief function model in landslide susceptibility map**. Comput Geosci 44:120–135. https://doi.org/10.1016/j.cageo.2012.03.003

    Article  Google Scholar 

  • Amar B, Ahmed S, Youcef B, Abdennasser S, Mustafa A, Hamid B (2021) The main events of the July–August 2020 Mila (NE Algeria) seismic sequence and the triggered landslides. Arab J Geosci 14(18):1894. https://doi.org/10.1007/s12517-021-08301-x

    Article  Google Scholar 

  • Badal P, Prem BT (2019) Landslide susceptibility in Rasuwa District of central Nepal after the 2015 Gorkha Earthquake. J Nepal Geol Soc 59:79–88. https://doi.org/10.3126/jngs.v59i0.24992

    Article  Google Scholar 

  • Benfedda A, Serkhane A, Bouhadad Y, Slimani A, Abbouda M, Bourenane H (2021) The main events of the July-August 2020 Mila (NE Algeria) seismic sequence and the triggered landslides. Arab J Geosci 14:1894. https://doi.org/10.1007/s12517-021-08301-xBolt

    Article  Google Scholar 

  • Bougdal R (2007) Urbanisation et mouvements de versants dans le contexte géologique et géotechnique des bassins néogènes d’Algérie du Nord. Thèse doctorat. USTHB, Algeria

    Google Scholar 

  • Bougdal R, Belhai d, Antoine p, (2006) Géologie de la ville de Constantine et de ses environs. Bull Serv Géol De L’algérie 18(2):23

    Google Scholar 

  • Bougdal R, Larriere A, Pincent B, Panet M, Bentabet A (2013) Les glissements de terrains du quartier Bélouizdad, Constantine. Algérie Bull Eng Geol Env. https://doi.org/10.1007/s10064-013-0465-8.

  • Bougrine A, Yelles-Chaouche AK, Calais E (2019) Active deformation in Algeria from continuous GPS measurements. Geophys J Int 217:572–588. https://doi.org/10.1093/gji/ggz035

    Article  CAS  Google Scholar 

  • Boulahia O (2022) Identification, characterization and interaction of seismic sources: Implication on sequences of seismic events of the period 2010–2021 in the North-East of Algeria Doctoral thesis at Sétif University. http://dspace.univ-setif.dz:8888/jspui/handle/123456789/3956

  • Bounif A, Haessler H, Meghraoui M (1987) The Constantine (northeast Algeria) earthquake of October 27, 1985: surface ruptures and aftershock study. Earth Planet Sci Lett 85(4):451–460

    Article  Google Scholar 

  • Bounif M (1990) Etude sismotectonique en Algérie du nord : contribution à l’étude d’un tronçon de la chaine tellienne à partir des répliques du séisme de Constantine du 27 octobre 1985Magister Thesis]: USTHB, 155 p.

  • Bourenane H, Bouhadad Y, Guettouche MS, Braham M (2015) GIS-based landslide susceptibility zonation using bivariate statistical and expert approaches in the city of Constantine (Northeast Algeria). Bull Eng Geol Environ 74(2):337–355

    Article  Google Scholar 

  • Bourenane H, Bensalem R, Oubaiche EH et al (2022) The large deep-seated landslide induced by the March 12th, 2012 rainfall event in the city of Azazga, Northern Algeria: deformation characteristics and failure mechanisms. Environ Earth Sci 81:476. https://doi.org/10.1007/s12665-022-10612-5

    Article  CAS  Google Scholar 

  • Chen WW, Zhang S (2021) GIS-based comparative study of Bayes network, Hoeffding tree and logistic model tree for landslide susceptibility modeling. CATENA 203:105344. https://doi.org/10.1016/j.catena.2021.105344

    Article  Google Scholar 

  • Coiffait PE (1992) Un bassin post-nappes dans son cadre structural : l’exemple du bassin de Constantine (Algérie nord-orientale). Doctorate thesis, Nancy University (405 p).

  • Daniell JE, Schaefer AM, Wenzel F (2017) Losses associated with secondary effects in earthquakes. Front Built Environ 3:30

    Article  Google Scholar 

  • Deschamps A, Bezzeghoud M, and Bounif A (1991) Seismological study of the Constantine (Algeria) earthquake (27 October 1985), IGN, Volume no. 08.

  • Di Napoli M, Carotenuto F, Cevasco A, Confuorto P, Di Martire D, Firpo M et al (2020) Machine learning ensemble modelling as a tool to improve landslide susceptibility map** reliability. Landslides 17:1897–1914. https://doi.org/10.1007/s10346-020-01392-9

    Article  Google Scholar 

  • Fan XM, Scaringi G, Korup O, West AJ, van Westen CJ, Tanyas H, Hovius N, Hales TC, Jibson RW, Allstadt KE, Zhang LM, Evans SG, Xu C, Li G, Xu PXJ (2019) Earthquake-Induced chains of geologic hazards: patterns, mechanisms, and impacts. Rev Geophys 57(2):421–503. https://doi.org/10.1029/2018RG000626

    Article  Google Scholar 

  • Françoise R-P, Rullan A (1985) Les mouvements de masse dans le bassin-versant du Rhumel constantinois: essai méthodologique. Travaux L’instit Géograph Reims 69:151

    Google Scholar 

  • Ghosh S, Carranza E J M, Westen C J, Jetten V G. and Bhattacharya D N (2011) Selecting and weighting spatial predictors for empirical modelling of landslide susceptibility in the Darjeeling Himalayas (India)

  • Hallal N, Chaouche AY, Hamai L, Lamali A, Dubois L, Mohammedi Y, Hamidatou M, Djadia L, Abtout A (2019) Spatiotemporal evolution of the El Biar landslide (Algiers): new field observation data constrained by ground-penetrating radar investigations. Bull Eng Geol Environ 78:5653–5670. https://doi.org/10.1007/s10064-019-01492-4

    Article  Google Scholar 

  • Hamidatou M, Sbartai B (2017) Probabilistic seismic hazard assessment in the Constantine region Northeast of Algeria. Arab J Geosci. https://doi.org/10.1007/s12517017-2876-5

    Article  Google Scholar 

  • Hamidatou M, Mohammedi Y, Yelles-Chaouche A, Thallak I, Stromeyer D, Lebdioui S, Cotton F, Hallal N, Khemici O (2019) Seismic hazard analysis of surface level, using topographic condition in the Northeast of Algeria. Pure Appl Geophys. https://doi.org/10.1007/s00024-019-023104

    Article  Google Scholar 

  • Hamidatou M, Mohammedi Y, Hallal N, Yelles-Chaouche A, Lebdioui S, Thallak I, Stromeyer D, Khemici O (2021) Reply to the comment on the paper “seismic hazard analysis of surface level, using topographic condition in Northeast of Algeria” by Mohamed Hamdache and José A. Pelàez Pure Appl Geophys 178:305–312. https://doi.org/10.1007/s00024-020-02644-4

    Article  Google Scholar 

  • Hong W, **yong W, Sixiang L, Chunwei S, Qiang L, Guiyu Z (2022) Characteristics and susceptibility assessment of the earthquake-triggered landslides in moderate-minor earthquake prone areas at southern margin of Sichuan Basin, China. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-022-02821w

    Article  Google Scholar 

  • HuangY YL, Guo C (2013) Distribution law of landslides triggered by earthquake based on cellular automata. J SouthWest JiaoTong Univ 48(4):609–615. https://doi.org/10.3969/j.issn.0258-2724.2013.04.004

    Article  Google Scholar 

  • Jessee MAN, Hamburger MW, Ferrara MR, McLean A, FitzGerald C (2020) A global dataset and model of earthquake-induced landslide fatalities. Landslides, 1–14

  • Keefer DK (1984) Landslides caused by earthquakes. Bull Geol Soc Am 95:406–421

    Article  Google Scholar 

  • Koukouvelas A, Litoseliti K, Nikolakopoulos V, Zygouri, (2015) Earthquake triggered rock falls and their role in the development of a rock slope: the case of Skolis Mountain, Greece. Eng Geol 191:71–85

    Article  Google Scholar 

  • Maouche S, Meghraoui M, Morhange C, Belabbes S, Bouhadad Y, Haddoum H (2011) Active coastal thrusting and folding, and uplift rate of the Sahel Anticline and Zemmouri earthquake area (Tell Atlas, Algeria). Tectonophysics 509:69–80. https://doi.org/10.1016/j.tecto.2011.06.003

    Article  Google Scholar 

  • Medhat N, Masa-yuki Y, To C, Harbi A, Maouche S (2022) Multi-temporal InSAR analysis to monitor landslides using the small baseline subset (SBAS) approach in the Mila Basin, Algeria. Terra Nova. https://doi.org/10.1111/ter.12591

    Article  Google Scholar 

  • Medwedeff WG, Clark MK, Zekkos D, West AJ (2020) Characteristic landslide distributions: an investigation of landscape controls on landslide size. Earth Planet Sci Lett 539:116203. https://doi.org/10.1016/j.epsl.2020.116203

    Article  CAS  Google Scholar 

  • Meghraoui M (1988) Géologie des zones sismiques du Nord de l’Algérie : paléosismologie tectonique active et synthèse sismotectonique. Thèse doctorat d’état, Université de Paris-Sud, Centre d’Orsay

  • Merghadi A, Boumezbeur A, Bui DT (2018) "Landslide susceptibility assessment at Mila Basin (Algeria): a comparative assessment of prediction capability of advanced machine learning methods. ISPRS Int J Geo-Inform 7(7):268. https://doi.org/10.3390/ijgi7070268

    Article  Google Scholar 

  • Hamidatou M, Chaker A, Nassim H et al (2022) Post-earthquake damage classification and assessment: case study of the residential buildings after the Mw = 5 earthquake in Mila city, Northeast Algeria on August 7, 2020. Bull Earthquake Eng 21:849–891. https://doi.org/10.1007/s10518-022-01568-9

    Article  Google Scholar 

  • Nadira B, Riad B, Hassiba K, Souad A (2022) Landslides in Mila town (northeast Algeria): causes and consequences. Arab J Geosci 15:753. https://doi.org/10.1007/s12517-022-09959-7

    Article  Google Scholar 

  • Nassim H, Laurent D, Rachid B et al (2017) Instabilités gravitaires dans la région de Béjaïa (Algérie): Inventaire et appréciation de l’importance relative des différents paramètres conduisant au déclenchement, au maintien ou à l’activation des instabilités. Bull Eng Geol Environ 77:631–645. https://doi.org/10.1007/s10064-017-1050-3

    Article  Google Scholar 

  • Oussadou F, Dorbath L, Dorbath C, Bounif MA, Benhallou H (2013) The Constantine (Algeria) seismic sequence of 27 October 1985: a new rupture model from aftershock relocation, focal mechanisms, and stress tensors. J Seismol 17(2):207–222

    Article  Google Scholar 

  • Ouyed M, Meghraoui M, Cisternas A, Deschamps A, Dorel J, Frechet J, Gaulon R, Hatzfeld D, Philip H (1981) Seismotectonics of the El Asnam earthquake. Nature 292:26–31. https://doi.org/10.1038/292026a0

    Article  Google Scholar 

  • Papadopoulos GA, Plessa A (2000) Magnitude-distance relations for earthquake-induced landslides in Greece. Eng Geol 58(3–4):377–386

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C, Mohammadi M, Moradi HR (2013) Application of weights-of evidence and certainty factor models and their comparison in landslide susceptibility map** at Haraz watershed. Iran Arab J Geosci 6(7):2351–2365

    Article  Google Scholar 

  • Pradhan B (2009) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. J Environ Earth Sci 60:1037–1054. https://doi.org/10.1007/s12665-009-0245-8

    Article  Google Scholar 

  • Pradhan B, Lee S, Buchroithner MF (2010) Remote sensing and GIS-based landslide susceptibility analysis and its cross-validation in three test areas using a frequency ratio model. Photogr Fernerkun 1:17–32. https://doi.org/10.1127/14328364/2010/0037

    Article  Google Scholar 

  • Regmi NR, Giardino JR, Vitek JD (2010) Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado. USA, Geomorphol 115:172–187. https://doi.org/10.1016/j.geomorph.2009.10.002

    Article  Google Scholar 

  • Saha S, Arabameri A, Saha A, Blaschke T, Ngo PTT, Nhu VH et al (2021) Prediction of landslide susceptibility in Rudraprayag, India using novel ensemble of conditional probability and boosted regression tree-based on crossvalidation method. Sci Total Environ 764:142928. https://doi.org/10.1016/j.scitotenv.2020.142928

    Article  CAS  Google Scholar 

  • Sixiang L, Zhao S, Huang J, Zhang X (2022) Landslide susceptibility assessment using statistical and machine learning techniques: A case study in the upper reaches of the Minjiang River, southwestern China. Front Earth Sci 10:986172. https://doi.org/10.3389/feart.2022.986172

    Article  Google Scholar 

  • Tebbouche MY, Ait Benamar D (2022) Hassan H M (2022) Characterization of El Kherba landslide triggered by the August 07, 2020, Mw = 4.9 Mila earthquake (Algeria) based on post-event field observations and ambient noise analysis. Environ Earth Sci 81:46. https://doi.org/10.1007/s12665-022-10172-8

    Article  Google Scholar 

  • Valagussa A, Marc O, Frattini P, Crosta GB (2019) Seismic and geological controls on earthquake-induced landslide size. Earth Planet Sci Lett 506:268–281. https://doi.org/10.1016/j.epsl.2018.11.005

    Article  CAS  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes, in: R.L. Shuster, R.J. Krizek (Eds), Landslides-Analysis and control. National Academy of Siences Special Report 176, Washington, pp. 11–33

  • Vila JM (1980) La chaîne alpine d’Algérie orientale et des confins algéro-tunisiens. Pierre et Marie Curie Parix VI

  • Van Westen CJ (1997) Statistical landslide hazard analysis. ILWIS 2.1 for windows application guide. ITC publication, Enschede, pp 73–84

  • Yalcin A, Reis S, Aydinoglu AC, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility map** in Trabzon. NE Turkey Catena 85(3):274–287

    Article  Google Scholar 

  • Yesilnacar E, Topal T (2005) Landslide susceptibility map**: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng Geol 79(3–4):251–266. https://doi.org/10.1016/j.enggeo.2005.02.002

    Article  Google Scholar 

  • Yilmaz C, Silva V, Weatherill G (2021) Probabilistic framework for regional loss assessment due to earthquake-induced liquefaction including epistemic uncertainty. Soil Dyn Earthq Eng 141:106493

    Article  Google Scholar 

  • Zhou Q, Jiang Y-F, Wu G, Chen G-G (2014) Distribution of coseismic landslides in Lushan earthquake and discussion on related problems. Seismol Geol 36(2):344–357

    CAS  Google Scholar 

  • Zighmi K, Riheb H, Younes H (2018) GIS-based approaches for the landslide susceptibility prediction in setif region (NE Algeria). Geotech Geol Eng. https://doi.org/10.1007/s10706-018-0615-7

    Article  Google Scholar 

  • Zine EL, Abidine R, Abdel Mansour N (2019) Landslide susceptibility map** using information value and frequency ratio for the Arzew sector (Northwestern of Algeria). Bull Min Res Exp 160:197–211. https://doi.org/10.19111/bulletinofmre.502343

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Center of Research in Astronomy, Astrophysics, and Geophysics (CRAAG, Algeria) for providing the resources needed to succeed in this work. The present work is supported by the CRAAG research project.

Funding

This paper did not receive any funding from any organization.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by H.N., H.M., H.L., A.S., and L.A. The first draft of the manuscript was written by H.N., and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. Furthermore, each author certifies that this material or similar material has not been and will not be submitted to or published in any other publication before its appearance.

Corresponding author

Correspondence to Nassim Hallal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Additional information

Responsible Editor: Mohamed Ksibi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hallal, N., Hamidatou, M., Hamai, L. et al. Landslides triggered by the August 2020 Mw 5.0 Mila, Algeria, earthquake: spatial distribution and susceptibility map**. Euro-Mediterr J Environ Integr (2024). https://doi.org/10.1007/s41207-024-00471-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41207-024-00471-w

Keywords

Navigation