Log in

Adsorption of Ciprofloxacin from Aqueous Media by Activated Carbon: A Review

  • Review
  • Published:
Water Conservation Science and Engineering Aims and scope Submit manuscript

Abstract

This article provides a comprehensive review of the removal of ciprofloxacin from aqueous media using activated carbons. Given the adverse impacts associated with the presence of ciprofloxacin in the environment, as well as the imperative to investigate its long-term ecotoxicity, this antibiotic was selected for study. The technique of adsorption utilizing activated carbon has demonstrated high efficacy in ciprofloxacin removal. Consequently, this review furnishes crucial insights for water treatment projects focusing on ciprofloxacin removal, highlighting the significance of precursor materials and synthesis methods. Plant-derived precursor materials, especially when impregnated, enhance carbon functionality by adding surface functional groups. Multiple studies have explored the efficacy of different activated carbons for removing ciprofloxacin, with notable adsorption capacities ranging from 14 to 462 mg g1. Controlling operational conditions like temperature and pH, typically ranging from 5 to 9, is vital in treatment plants, and the adsorption efficiency is, in general, higher at temperatures from 30 to 40 °C. The Langmuir model is often suitable for describing equilibrium data, so when designing effluent treatment systems, materials with high affinity (parameter “KL”) of the Langmuir isotherm are preferred, especially for low concentration levels. Regional disparities in studies require continued research, especially regarding the adsorption of antibiotics and pharmaceuticals in wastewater, synthetic, and real-world scenarios.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Contact the corresponding author: schaline_swa@hotmail.com.

Abbreviations

CIP:

Ciprofloxacin

PPJ:

Activated carbon of Prosopis juliflora wood

SGAC:

Activated carbon of activated sludge

FPU:

C-activated carbon of Folium cycas impregnated with potassium bicarbonate

FSU:

C-activated carbon of Folium cycas impregnated with sodium bicarbonate and urea

MAAC:

Activated carbon of sterculia villosa Roxb shells

ZFP:

Activated carbon of jackfruit shell

ZJFP:

Activated carbon of jack fruit shell impregnated with ZnO

BAC:

Activated carbon of bamboo

AFM:

BAC-activated carbon of bamboo magnetized with Fe3O4, FeSO4, and FeCl3

ALAC:

Activated carbon of elephant grass

PPAC:

Activated carbon of pomelo bark

AC:

Activated carbon of Enteromorpha proliferates

AC:

SBS-activated carbon of Enteromorpha proliferates impregnated with sodium benzenesulfonate

DRH:

Activated carbon of disilicate rice husk

ACJ:

Activated carbon of Jerivá

pHzpc:

Zero charge point

TGA:

Thermogravimetry analysis

SEM:

Scanning electronic microscopy

FTIR:

Fourier transform infrared spectroscopy

BET:

N2 physisorption

References

  1. Alberti SW, Hübner KV, Busso C, da Silva EA, Scheufele FB (2023) 2,4-D removal by fish scales-derived carbon/apatite composite adsorbent: adsorption mechanism and modeling. J Mol Liq 382:121958. https://doi.org/10.1016/j.molliq.2023.121958

    Article  CAS  Google Scholar 

  2. Baaloudj O, Nasrallah N, Kenfoud H, Bourkeb KW, Badawi AK (2023) Polyaniline/Bi12TiO20 hybrid system for cefixime removal by combining adsorption and photocatalytic degradation. ChemEngineering 7:4. https://doi.org/10.3390/chemengineering7010004

    Article  CAS  Google Scholar 

  3. Badawi AK, Salama RS, Mostafa MMM (2023) Natural-based coagulants/flocculants as sustainable market-valued products for industrial wastewater treatment: a review of recent developments. RSC Adv 13:19335–19355. https://doi.org/10.1039/D3RA01999C

    Article  CAS  Google Scholar 

  4. Bansal RC, Goyal M (2005) Activated carbon adsorption., Boca Raton

  5. Ben Y, Hu M, Zhang X, Wu S, Wong MH, Wang M, Andrews CB, Zheng C (2020) Efficient detection and assessment of human exposure to trace antibiotic residues in drinking water. Water Res 175. https://doi.org/10.1016/j.watres.2020.115699

  6. Bressan P, Geremias R, de Souza EL (2020) Resíduo Da indústria cervejeira como precursor de carvão ativado comparado a outros resíduos agroindustriais: uma revisão. Evidência 20:141–148. https://doi.org/10.18593/eba.25575

    Article  Google Scholar 

  7. Bunaciu AA, Udriştioiu E, gabriela, Aboul-Enein HY (2015) X-ray diffraction: instrumentation and applications

  8. Campoli-Richards DM, Monk JP, Price A, Benfield P, Todd PA, Ward A (1988) Ciprofloxacin: a review of its antibacterial activity, Pharmacokinetic properties and therapeutic use. Drug Evaluation 35:373–447. https://doi.org/10.2165/00003495-198835040-00003

    Article  CAS  Google Scholar 

  9. Ceron LP (2011) Contamination of water by disposing of drugs. Revista Tae. 1

  10. Chandrasekaran A, Patra C, Narayanasamy S, Subbiah S (2020) Adsorptive removal of ciprofloxacin and amoxicillin from single and binary aqueous systems using acid-activated carbon from Prosopis juliflora. Environ Res 188. https://doi.org/10.1016/j.envres.2020.109825

  11. ChemAxon L (2024) Software solutions and services for chemistry & biology, https://chemaxon.com/

  12. Chen BJ, Liu Y, Liu BC, Huang RB, Wu PL, Jiang T, Dong X, Li X, Khoo HE, Lee SW (2024) Chemical modifications of activated carbons prepared from different Ganoderma residues, their adsorption, and catalytic application. Matéria (Rio De Janeiro) 29. https://doi.org/10.1590/1517-7076-rmat-2023-0294

  13. Chow LKM, Ghaly TM, Gillings MR (2021) A survey of sub-inhibitory concentrations of antibiotics in the environment

  14. Czyrski A (2022) The spectrophotometric determination of lipophilicity and dissociation constants of ciprofloxacin and levofloxacin. Spectrochim Acta Mol Biomol Spectrosc 265. https://doi.org/10.1016/j.saa.2021.120343

  15. Debebe Y, Alemayehu E, Worku Z, Bae W, Lennartz B (2023) Sorption of 2,4-dichlorophenoxyacetic acid from agricultural leachate using termite mound soil: optimization using response surface methodology. Water (Basel) 15:327. https://doi.org/10.3390/w15020327

    Article  CAS  Google Scholar 

  16. Deng W (2021) Adsorption of heavy metal ions and antibiotics from aqueous solution on activated carbons prepared from agricultural waste. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing Ltd

  17. Dotto GL, McKay G (2020) Current scenario and challenges in adsorption for water treatment. J Environ Chem Eng 8. https://doi.org/10.1016/j.jece.2020.103988

  18. Ferreira LM, de Melo RR (2021) Use of activated charcoal as bio-adsorbent for treament of residual waters: a review. Nativa 9:215–221

    Article  Google Scholar 

  19. Firmansyah ML, Amalina I, Rizki IN, Alfaza AM, Jiwanti PK, Jalil AA, Goto M (2023) Functionalization of biomass-derived activated carbon and electrochemical reduction for the recovery of gold from mobile phone leachate. Arab J Sci Eng 48:16455–16467. https://doi.org/10.1007/s13369-023-08327-1

    Article  CAS  Google Scholar 

  20. Foust AS (1982) Principios De Operações Unitárias. LTC, Rio de Janeiro

    Google Scholar 

  21. Francoeur M, Yacou C, Petit E, Granier D, Flaud V, Gaspard S, Brosillon S, Ayral A (2023) Removal of antibiotics by adsorption and catalytic ozonation using magnetic activated carbons prepared from Sargassum Sp. J Water Process Eng 53. https://doi.org/10.1016/j.jwpe.2023.103602

  22. GadelHak Y, El-Azazy M, Shibl MF, Mahmoud RK (2023) Cost estimation of synthesis and utilization of nano-adsorbents on the laboratory and industrial scales: a detailed review. Sci Total Environ 875:162629. https://doi.org/10.1016/j.scitotenv.2023.162629

    Article  CAS  Google Scholar 

  23. Guo F, Wang Y, Peng J, Huang H, Tu X, Zhao H, Zhan N, Rao Z, Zhao G, Yang H (2022) Occurrence, distribution, and risk assessment of antibiotics in the aquatic environment of the Karst Plateau Wetland of Yangtze River Basin, Southwestern China. Int J Environ Res Public Health 19. https://doi.org/10.3390/ijerph19127211

  24. Guo X, Yan Z, Zhang Y, Xu W, Kong D, Shan Z, Wang N (2018) Behavior of antibiotic resistance genes under extremely high-level antibiotic selection pressures in pharmaceutical wastewater treatment plants. Sci Total Environ 612:119–128. https://doi.org/10.1016/j.scitotenv.2017.08.229

    Article  CAS  Google Scholar 

  25. Gupta A, Garg A (2019) Adsorption and oxidation of ciprofloxacin in a fixed bed column using activated sludge derived activated carbon. J Environ Manage 250. https://doi.org/10.1016/j.jenvman.2019.109474

  26. Ho YS, McKay G (1999) A kinetic study of dye sorption by biosorbent waste product pith. Resour Conserv Recycl 25:171–193. https://doi.org/10.1016/S0921-3449(98)00053-6

    Article  Google Scholar 

  27. Jiang WT, Chang PH, Wang YS, Tsai Y, Jean JS, Li Z, Krukowski K (2013) Removal of ciprofloxacin from water by birnessite. J Hazard Mater 250–251:362–369. https://doi.org/10.1016/j.jhazmat.2013.02.015

    Article  CAS  Google Scholar 

  28. Kong J, Zheng Y, **ao L, Dai B, Meng Y, Ma Z, Wang J, Huang X (2020) Synthesis and comparison studies of activated carbons based folium cycas for ciprofloxacin adsorption. Colloids Surf Physicochem Eng Asp 606. https://doi.org/10.1016/j.colsurfa.2020.125519

  29. Kovalakova P, Cizmas L, McDonald TJ, Marsalek B, Feng M, Sharma VK (2020) Occurrence and toxicity of antibiotics in the aquatic environment: a review

  30. Kristiansson E, Fick J, Janzon A, Grabic R, Rutgersson C, Weijdegård B, Söderström H, Larsson J (2011) Pyrosequencing of antibiotic-contaminated river sediments reveals high levels of resistance and gene transfer elements. PLoS ONE 6. https://doi.org/10.1371/journal.pone.0017038

  31. Kumar A, Patra C, Kumar S, Narayanasamy S (2022) Effect of magnetization on the adsorptive removal of an emerging contaminant ciprofloxacin by magnetic acid activated carbon. Environ Res 206. https://doi.org/10.1016/j.envres.2021.112604

  32. LeMaire SA, Zhang L, Luo W, Ren P, Azares AR, Wang Y, Zhang C, Coselli JS, Shen YH (2018) Effect of ciprofloxacin on susceptibility to aortic dissection and rupture in mice. JAMA Surg 153. https://doi.org/10.1001/jamasurg.2018.1804

  33. Li D, Qi R, Yang M, Zhang Y, Yu T (2011) Bacterial community characteristics under long-term antibiotic selection pressures. Water Res 45:6063–6073. https://doi.org/10.1016/j.watres.2011.09.002

    Article  CAS  Google Scholar 

  34. Lim C, Kwak CH, Jeong SG, Kim D, Lee Y-S (2023) Enhanced CO2 adsorption of activated carbon with simultaneous surface etching and functionalization by nitrogen plasma treatment. Carbon Lett 33:139–145. https://doi.org/10.1007/s42823-022-00410-1

    Article  Google Scholar 

  35. Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, Anastopoulos I (2019) A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq 273:425–434. https://doi.org/10.1016/j.molliq.2018.10.048

    Article  CAS  Google Scholar 

  36. Magesh N, Renita AA, Siva R, Harirajan N, Santhosh A (2022) Adsorption behavior of fluoroquinolone(ciprofloxacin) using zinc oxide impregnated activated carbon prepared from jack fruit peel: kinetics and isotherm studies. Chemosphere 290. https://doi.org/10.1016/j.chemosphere.2021.133227

  37. Nascimento CT, do, Carvalho DG, Vieira MGA, Silva EA, da, Borba CE (2019) Study of the adsorption of carbendazim on activated biochar from corn husk, https://www.ibeas.org.br/congresso/Trabalhos2019/II-026.pdf

  38. Nascimento RF, de do, Lima ACA, Vidal CB, Melo D, de Raulino Q (2020) G.S.C.: Adsorção - Aspectos teóricos e aplicações ambientais. Imprensa Universitária UFC, Fortaleza -CE

    Google Scholar 

  39. : NCBI, ciprofloxacin https://pubchem.ncbi.nlm.nih.gov/compound/Ciprofloxacin#section=Information-Sources

  40. Niestroj-Pahl R, Stelmaszyk L, Elsherbiny IMA, Abuelgasim H, Krug M, Staaks C, Birkholz G, Horn H, Li T, Dong B, Dähne L, Tiehm A, Panglisch S (2020) Performance of layer-by-layer-modified multibore® ultrafiltration capillary membranes for salt retention and removal of antibiotic resistance genes. Membr (Basel) 10:1–17. https://doi.org/10.3390/membranes10120398

    Article  CAS  Google Scholar 

  41. de Oliveira Carvalho C, Costa Rodrigues DL, Lima ÉC, Santanna Umpierres C, Chaguezac C, Machado Machado DF (2019) Kinetic, equilibrium, and thermodynamic studies on the adsorption of ciprofloxacin by activated carbon produced from Jerivá (Syagrus romanzoffiana). Environ Sci Pollut Res 26:4690–4702. https://doi.org/10.1007/s11356-018-3954-2

    Article  CAS  Google Scholar 

  42. Omitola OB, Abonyi MN, Akpomie KG, Dawodu FA (2022) Adams-Bohart, Yoon-Nelson, and Thomas modeling of the fix-bed continuous column adsorption of Amoxicillin onto silver nanoparticle-maize leaf composite. Appl Water Sci 12:94. https://doi.org/10.1007/s13201-022-01624-4

    Article  CAS  Google Scholar 

  43. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 71. https://doi.org/10.1136/bmj.n71

  44. Patra C, Medisetti RMN, Pakshirajan K, Narayanasamy S (2019) Assessment of raw, acid-modified and chelated biomass for sequestration of hexavalent chromium from aqueous solution using Sterculia Villosa Roxb. Shells. Environ Sci Pollut Res 26:23625–23637. https://doi.org/10.1007/s11356-019-05582-4

    Article  CAS  Google Scholar 

  45. Peng X, Hu F, Zhang T, Qiu F, Dai H (2018) Amine-functionalized magnetic bamboo-based activated carbon adsorptive removal of ciprofloxacin and norfloxacin: a batch and fixed-bed column study. Bioresour Technol 249:924–934. https://doi.org/10.1016/j.biortech.2017.10.095

    Article  CAS  Google Scholar 

  46. Peralta-Hernández JM, Brillas E (2023) A critical review over the removal of Paracetamol (acetaminophen) from synthetic waters and real wastewaters by direct, hybrid catalytic, and sequential ozonation processes

  47. Pereira AMPT, Silva LJG, Lino CM, Meisel LM, Pena A (2016) Assessing environmental risk of pharmaceuticals in Portugal: an approach for the selection of the Portuguese monitoring stations in line with Directive 2013/39/EU. Chemosphere 144:2507–2515. https://doi.org/10.1016/j.chemosphere.2015.10.100

    Article  CAS  Google Scholar 

  48. Pereira AR, Pereira R, de Bottrel O (2018) S.E.C.: removal of pesticides included in ordinance 2914/2011 in WTPs

  49. Roca Jalil ME, Baschini M, Sapag K (2015) Influence of pH and antibiotic solubility on the removal of ciprofloxacin from aqueous media using montmorillonite. Appl Clay Sci 114:69–76. https://doi.org/10.1016/j.clay.2015.05.010

    Article  CAS  Google Scholar 

  50. Roh JS, Park JS, Roh JM, Park HB, Do SH (2018) The pretreatment of granular activated carbon using sodium persulfate and hydrogen peroxide under basic conditions: Properties, metal impregnation, and as(V) adsorption. Mater Chem Phys 218:317–325. https://doi.org/10.1016/j.matchemphys.2018.07.045

    Article  CAS  Google Scholar 

  51. Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York

    Google Scholar 

  52. Salame II, Bandosz TJ (2003) Role of surface chemistry in adsorption of phenol on activated carbons. J Colloid Interface Sci 264:307–312. https://doi.org/10.1016/S0021-9797(03)00420-X

    Article  CAS  Google Scholar 

  53. Scheufele FB, Módenes AN, Borba CE, Ribeiro C, Espinoza-Quiñones FR, Bergamasco R, Pereira NC (2016) Monolayer-multilayer adsorption phenomenological model: kinetics, equilibrium and thermodynamics. Chem Eng J 284:1328–1341. https://doi.org/10.1016/j.cej.2015.09.085

    Article  CAS  Google Scholar 

  54. Shahzad W, Badawi AK, Rehan ZA, Khan AM, Khan RA, Shah F, Ali S, Ismail B (2022) Enhanced visible light photocatalytic performance of Sr0.3(ba,mn)0.7ZrO3 perovskites anchored on graphene oxide. Ceram Int 48:24979–24988. https://doi.org/10.1016/j.ceramint.2022.05.151

    Article  CAS  Google Scholar 

  55. Silva JS, da, Santos ML, dos, Silva Filho EC, da, Carvalho M das, de Nunes GF (2019) L.C.C.: Byproducts of babassu (Orbignya sp) as new adsorptive materials: a review. Revista Materia. 24, https://doi.org/10.1590/s1517-707620190003.0730

  56. Silva T, Barbosa C, Gama B, Nascimento G, Duarte M (2018) Adding value to agro-industrial residue: phenol removal using adsorbent prepared from peanut husks. Materia Magazine 23. https://doi.org/10.1590/s1517-707620170001.0283

  57. Singh S, Lundborg CS, Diwan V (2022) Factors influencing the adsorption of antibiotics onto activated carbon in aqueous media. Water Sci Technol 86:2260–2269. https://doi.org/10.2166/wst.2022.334

    Article  CAS  Google Scholar 

  58. Soares AFS, Souza E, Souza LP (2020) Contamination of public water supply by emerging pollutants and the right to health. Revista De Direito Sanitario 20:100–133. https://doi.org/10.11606/ISSN.2316-9044.V20I2P100-133

    Article  Google Scholar 

  59. Sousa ÉML, Otero M, Gil MV, Ferreira P, Esteves VI, Calisto V (2023) Insights into matrix and competitive effects on antibiotics removal from wastewater by activated carbon produced from brewery residues. Environ Technol Innov 30:103074. https://doi.org/10.1016/j.eti.2023.103074

    Article  CAS  Google Scholar 

  60. Staudt J, Scheufele FB, Ribeiro C, Sato TY, Canevesi R, Borba CE (2020) Ciprofloxacin desorption from gel type ion exchange resin: desorption modeling in batch system and fixed bed column. Sep Purif Technol 230. https://doi.org/10.1016/j.seppur.2019.115857

  61. Sun Y, Li H, Li G, Gao B, Yue Q, Li X (2016) Characterization and ciprofloxacin adsorption properties of activated carbons prepared from biomass wastes by H3PO4 activation. Bioresour Technol 217:239–244. https://doi.org/10.1016/j.biortech.2016.03.047

    Article  CAS  Google Scholar 

  62. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry 87:1051–1069. https://doi.org/10.1515/pac-2014-1117

    Article  CAS  Google Scholar 

  63. Torres NH, Américo JHP, Ferreira LFR, Maranho LA, Vilca FZ, Tornisielo VL (2012) Fármacos no Ambiente - Revisão. Revista De Estudos Ambientais 14:67–75 https://doi.org/ISSN 1983 1501

    Google Scholar 

  64. UE: Implementing Decision (UE) 2015/495 of the Commission of 20 March 2015., União Européia (2015)

  65. Wang M, Li G, Huang L, Xue J, Liu Q, Bao N, Huang J (2017a) Study of ciprofloxacin adsorption and regeneration of activated carbon prepared from Enteromorpha prolifera impregnated with H3PO4 and sodium benzenesulfonate. Ecotoxicol Environ Saf. 139:36–42

    Article  CAS  Google Scholar 

  66. Wang T, Pan X, Ben W, Wang J, Hou P, Qiang Z (2017b) Adsorptive removal of antibiotics from water using magnetic ion exchange resin. J Environ Sci (China) 52:111–117. https://doi.org/10.1016/j.jes.2016.03.017

    Article  CAS  Google Scholar 

  67. Wu J (2004) Modeling adsorption of organic compounds on activated carbon, https://www.diva-portal.org/smash/get/diva2:142987/FULLTEXT01.pdf

  68. Yang X, Chen Z, Zhao W, Liu C, Qian X, Zhang M, Wei G, Khan E, Ng H, Ok YS (2021) Y.: Recent advances in photodegradation of antibiotic residues in water

  69. Zakaria BS, Dhar BR (2022) A review of stand-alone and hybrid microbial electrochemical systems for antibiotics removal from wastewater

  70. Zhang B, Han X, Gu P, Fang S, Bai J (2017) Response surface methodology approach for optimization of ciprofloxacin adsorption using activated carbon derived from the residue of desilicated rice husk. J Mol Liq 238:316–325. https://doi.org/10.1016/j.molliq.2017.04.022

    Article  CAS  Google Scholar 

  71. Zhao K, Kang SX, Yang YY, Yu DG (2021) Electrospun functional nanofiber membrane for antibiotic removal in water: review

Download references

Acknowledgements

The authors thank the Coordination of Improvement of Higher Education Personnel (CAPES) - Finance Code 001.

Funding

Coordination of Improvement of Higher Education Personnel (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Schaline Winck Alberti: conceptualization, methodology, software, validation, formal analysis, investigation, data curation, writing—original draft, writing—review and editing, visualization. Fabiano Bisinella Scheufele: formal analysis, resources, review and editing, supervision. Vilmar Steffen: resources, writing—review and editing, supervision. Edson Antonio da Silva: conceptualization, methodology, software, validation, formal analysis, investigation, resources, data curation, writing—original draft, writing—review and editing, review and editing, visualization, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Schaline Winck Alberti.

Ethics declarations

Competing Interests

Schaline Winck Alberti reports financial support was provided by Coordination of Higher Education Personnel Improvement. Edson Antonio da Silva reports financial support was provided by National Council for Scientific and Technological Development.

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alberti, S.W., Scheufele, F.B., Steffen, V. et al. Adsorption of Ciprofloxacin from Aqueous Media by Activated Carbon: A Review. Water Conserv Sci Eng 9, 26 (2024). https://doi.org/10.1007/s41101-024-00260-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41101-024-00260-0

Keywords

Navigation