Log in

A Multi-model Framework for Streamflow Forecasting Based on Stochastic Models: an Application to the State Of Ceará, Brazil

  • Original Paper
  • Published:
Water Conservation Science and Engineering Aims and scope Submit manuscript

Abstract

Reliable long-term (decadal scale) streamflow prediction would provide significant planning information for water resources management, particularly in areas marked by significant variability at those time scales. In this study, a multi-model for prediction using four models that incorporate preprocessing methods along with data-driven forecast models coupled using the least absolute shrinkage and selection operator (LASSO) regression method is proposed. Models utilized complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and wavelet transform (WT) as the decomposition methods and autoregressive (AR) and hidden Markov models (HMM) as the predictive method. The model is evaluated in a comparative analysis with a variety of models previously proposed for hydrological time series prediction. We compare the predictive skill of alternative data-driven models for average annual streamflow (3 ~ 15 years) prediction. Results indicate that the multi-model performed better than the other models, presenting lower values of MAE and RSME. This multi-model can be a reliable tool for forecasting, which can be explored for hydrological data that have remarkably nonlinear and nonstationary features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data was retrieved from the Brazilian National Water Agency (ANA) at http://www.snirh.gov.br/hidroweb/.

Code Availability

The calculations and figures were made using the R software.

References

  1. Liang Z, Li Y, Hu Y, Li B, Wang J (2018) A data-driven SVR model for long-term runoff prediction and uncertainty analysis based on the Bayesian framework. Theor Appl Climatol 133:137–149. https://doi.org/10.1007/s00704-017-2186-6

    Article  Google Scholar 

  2. Singh SK (2016) Long-term streamflow forecasting based on ensemble streamflow prediction technique: A case study in New Zealand. Water Resour Manag 30:2295–2309. https://doi.org/10.1007/s11269-016-1289-7

    Article  Google Scholar 

  3. Wang L, Li X, Ma C, Bai Y (2019) Improving the prediction accuracy of monthly streamflow using a data-driven model based on a double-processing strategy. J Hydrol 573:733–745. https://doi.org/10.1016/j.jhydrol.2019.03.101

    Article  Google Scholar 

  4. Szolgayova E, Parajka J, Blöschl G, Bucher C (2014) Long term variability of the Danube River flow and its relation to precipitation and air temperature. J Hydrol 519:871–880

    Article  Google Scholar 

  5. Nazir HM, Hussain I, Faisal M, Shoukry AM, Gani S, Ahmad I (2019) Development of Multidecomposition Hybrid Model for Hydrological Time Series Analysis. Complexity. https://doi.org/10.1155/2019/2782715

    Article  Google Scholar 

  6. Wen X, Feng Q, Deo RC, Wu M, Yin Z, Yang L, Singh VP (2019) Two-phase extreme learning machines integrated with the complete ensemble empirical mode decomposition with adaptive noise algorithm for multi-scale runoff prediction problems. J Hydrol 570:167–184. https://doi.org/10.1016/j.jhydrol.2018.12.060

    Article  Google Scholar 

  7. Rolim LZR, de Souza Filho FDA (2020) Shift Detection in Hydrological Regimes and Pluriannual Low-Frequency Streamflow Forecasting Using the Hidden Markov Model. Water 12:2058. https://doi.org/10.3390/w12072058

    Article  Google Scholar 

  8. Khan MMH, Muhammad NS, El-Shafie A (2020) Wavelet based hybrid ANN-ARIMA models for meteorological drought forecasting. J Hydrol 590:125380. https://doi.org/10.1016/j.jhydrol.2020.125380

    Article  Google Scholar 

  9. Kisi O, Gorgij AD, Zounemat-Kermani M, Mahdavi-Meymand A, Kim S (2019) Drought forecasting using novel heuristic methods in a semi-arid environment. J Hydrol 578:124053. https://doi.org/10.1016/j.jhydrol.2019.124053

    Article  Google Scholar 

  10. Dariane AB, Azimi S (2018) Streamflow forecasting by combining neural networks and fuzzy models using advanced methods of input variable selection. J Hydroinformatics 20(2):520–532. https://doi.org/10.2166/hydro.2017.076

    Article  Google Scholar 

  11. Erkyihun ST, Zagona E, Rajagopalan B (2017) Wavelet and Hidden Markov-Based Stochastic Simulation Methods Comparison on Colorado River Streamflow. J Hydrol Eng 22(9):04017033. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001538

    Article  Google Scholar 

  12. Meng E, Huang S, Huang Q, Fang W, Wu L, Wang L (2019) A robust method for non-stationary streamflow prediction based on improved EMD-SVM model. J Hydrol 568:462–478. https://doi.org/10.1016/j.jhydrol.2018.11.015

    Article  Google Scholar 

  13. Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391:202–216. https://doi.org/10.1016/j.jhydrol.2010.07.012

    Article  Google Scholar 

  14. He Z, Wen X, Liu H, Du J (2014) A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region. J Hydrol 509:379–386. https://doi.org/10.1016/j.jhydrol.2013.11.054

    Article  Google Scholar 

  15. Zhang Z, Zhang Q, Singh VP, Shi P (2018) River flow modelling: comparison of performance and evaluation of uncertainty using data-driven models and conceptual hydrological model. Stoch Environ Res Risk Assess 32(9):2667–2682. https://doi.org/10.1007/s00477-018-1536-y

    Article  Google Scholar 

  16. Yang S, Yang D, Chen J, Santisirisomboon J, Lu W, Zhao B (2020) A physical process and machine learning combined hydrological model for daily streamflow simulations of large watersheds with limited observation data. J Hydrol 590:125206. https://doi.org/10.1016/j.jhydrol.2020.125206

    Article  Google Scholar 

  17. Clark MP, Bierkens MFP, Samaniego L, Woods RA, Uijlenhoet R, Bennett KE, Pauwels VRN, Cai X, Wood AW, Peters-Lidard CD (2017) The evolution of process-based hydrologic models: historical challenges and the collective quest for physical realism. Hydrol Earth Syst Sci 21:3427–3440. https://doi.org/10.5194/hess-21-3427-2017

    Article  Google Scholar 

  18. Saraiva SV, de Oliveira Carvalho F, Santos CAG, Barreto LC, Freire PKDMM (2021) Daily streamflow forecasting in Sobradinho Reservoir using machine learning models coupled with wavelet transform and bootstrap**. Appl Soft Comput 102:107081. https://doi.org/10.1016/j.asoc.2021.107081

    Article  Google Scholar 

  19. Remesan R, Mathew J (2016) Hydrological data driven modelling. Springer International Pu.

  20. Thomas HA, Fiering MB (1962) Mathematical synthesis of streamflow sequences for the analysis of river basins by simulation. In: Mass A et al (eds) Design of water resource systems. Harvard University Press, Cambridge, Massachusetts, pp 459–493

    Chapter  Google Scholar 

  21. Salas JD, Obeysekera JTB (1982) ARMA model identification of hydrologic time series. Water Resour Res 18(4):1011–1021. https://doi.org/10.1029/WR018i004p01011

    Article  Google Scholar 

  22. Koutsoyiannis D, Yao H, Georgakakos A (2008) Medium-range flow prediction for the Nile: a comparison of stochastic and deterministic methods/Prévision du débit du Nil à moyen terme: une comparaison de méthodes stochastiques et déterministes. Hydrol Sci J 53(1):142–164. https://doi.org/10.1623/hysj.53.1.142

    Article  Google Scholar 

  23. Papacharalampous GA, Tyralis H, Koutsoyiannis D (2017) Forecasting of geophysical processes using stochastic and machine learning algorithms. European Water 59:161–168

    Google Scholar 

  24. Papacharalampous G, Tyralis H, Koutsoyiannis D (2019) Comparison of stochastic and machine learning methods for multi-step ahead forecasting of hydrological processes. Stoch Environ Res Risk Assess 33(2):481–514. https://doi.org/10.1007/s00477-018-1638-6

    Article  Google Scholar 

  25. Lall U (1995) Nonparametric function estimation: Recent hydrologic applications. Reviews of Geophysics, US National Report, 1093–1102.

  26. Dettinger MD, Ghil M, Keppenne CL (1995) Interannual and interdecadal variability in United States surface-air temperatures, 1910–87. Clim Change 31(1):35–66. https://doi.org/10.1007/BF01092980

    Article  Google Scholar 

  27. Souza Filho FA, Lall U (2003) Seasonal to interannual ensemble streamflow forecasts for Ceara, Brazil: Applications of a multivariate semiparametric algorithm. Water Resour Res 39(11):1307. https://doi.org/10.1029/2002WR001373

    Article  Google Scholar 

  28. Kwon H-H, Lall U, Khalil AF (2007) Stochastic simulation model for nonstationary time series using an autoregressive wavelet decomposition: Applications to rainfall and temperature. Water Resour Res 43(5). https://doi.org/10.1029/2006WR005258

  29. Chou CM, Wang RY (2004) Application of wavelet-based multi-model Kalman filters to real-time flood forecasting. Hydrol Process 18:987–1008. https://doi.org/10.1002/hyp.1451

    Article  Google Scholar 

  30. Humphrey GB, Gibbs MS, Dandy GC, Maier HR (2016) A hybrid approach to monthly streamflow forecasting: Integrating hydrological model outputs into a Bayesian artificial neural network. J Hydrol 540:623–640. https://doi.org/10.1016/j.jhydrol.2016.06.026

    Article  Google Scholar 

  31. Guo J, Zhou J, Qin H, Zou Q, Li Q (2011) Monthly streamflow forecasting based on improved support vector machine model. Expert Syst Appl 38:13073–13081. https://doi.org/10.1016/j.eswa.2011.04.114

    Article  Google Scholar 

  32. Kasiviswanathan KS, He J, Sudheer KP, Tay JH (2016) Potential application of wavelet neural network ensemble to forecast streamflow for flood management. J Hydrol 536:161–173. https://doi.org/10.1016/j.jhydrol.2016.02.044

    Article  Google Scholar 

  33. Nourani V, Kisi Ö, Komasi M (2011) Two hybrid Artificial Intelligence approaches for modeling rainfall–runoff process. J Hydrol 402:41–59. https://doi.org/10.1016/j.jhydrol.2011.03.002

    Article  Google Scholar 

  34. Nourani V, Komasi M, Mano A (2009) A Multivariate ANN-Wavelet Approach for Rainfall-Runoff Modeling. Water Resour Manag 23:2877–2894. https://doi.org/10.1007/s11269-009-9414-5

    Article  Google Scholar 

  35. Peng T, Zhou J, Zhang C, Fu W (2017) Streamflow forecasting using empirical wavelet transform and artificial neural networks. Water 9:1–20. https://doi.org/10.3390/w9060406

    Article  Google Scholar 

  36. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc London Ser A Math Phys Eng Sci 454:903–995. https://doi.org/10.1098/rspa.1998.0193

    Article  Google Scholar 

  37. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 01:1–41. https://doi.org/10.1142/S1793536909000047

    Article  Google Scholar 

  38. Torres ME, Colominas MA, Schlotthauer G, Flandrin P (2011) A complete ensemble empirical mode decomposition with adaptive noise, in: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 4144–4147. https://doi.org/10.1109/ICASSP.2011.5947265

  39. Adarsh S, Reddy MJ (2018) Multiscale characterization and prediction of monsoon rainfall in India using Hilbert-Huang transform and time-dependent intrinsic correlation analysis. Meteorol Atmos Phys 130:667–688. https://doi.org/10.1007/s00703-017-0545-6

    Article  Google Scholar 

  40. Gaiser T, Krol M, Frischkorn H, de Araújo JC (Eds.) (2003) Global Change and Regional Impact: Water availability and vulnerability of ecosystems and society in the semiarid Northeast of Brazil. Springer Science & Business Media. https://doi.org/10.1007/978-3-642-55659-3

  41. Malveira VTC, de Araújo JC, Güntner A (2012) Hydrological Impact of a High-Density Reservoir Network in Semiarid Northeastern Brazil. J Hydrol Eng 17(1):109–117. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000404

    Article  Google Scholar 

  42. Lima Neto IE, Wiegand MC, Carlos de Araújo J (2011) Redistribution des sédiments due à un réseau dense de réservoirs dans un grand bassin versant semi-aride du Brésil. Hydrol Sci J 56:319–333. https://doi.org/10.1080/02626667.2011.553616

    Article  Google Scholar 

  43. Antico A, Schlotthauer G, Torres ME (2014) Analysis of hydroclimatic variability and trends using a novel empirical mode decomposition: Application to the Paraná River Basin. J Geophys Res Atmos 119:1218–1233. https://doi.org/10.1002/2013JD020420

    Article  Google Scholar 

  44. Ren Y, Suganthan PN, Srikanth N (2014) A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods. IEEE Trans Sustain Energy 6(1):236–244. https://doi.org/10.1109/TSTE.2014.2365580

    Article  Google Scholar 

  45. Bowman D, Lees J (2013) The Hilbert-Huang Transform: A High-Resolution Spectral Method for Nonlinear and Nonstationary Time Series. Seismol Res Lett 84(6):1074–1080. https://doi.org/10.1785/0220130025

    Article  Google Scholar 

  46. Torrence C, Compo GP (1998) A Practical Guide to Wavelet Analysis. Bull Am Meteorol Soc 79:61–78. https://doi.org/10.1175/1520-0477(1998)079%3c0061:APGTWA%3e2.0.CO;2

    Article  Google Scholar 

  47. Labat D (2005) Recent advances in wavelet analyses: Part 1. A review of concepts J Hydrol 314:275–288. https://doi.org/10.1016/j.jhydrol.2005.04.003

    Article  Google Scholar 

  48. Sang Y-F (2013) A review on the applications of wavelet transform in hydrology time series analysis. Atmos Res 122:8–15. https://doi.org/10.1016/j.atmosres.2012.11.003

    Article  Google Scholar 

  49. Danandeh Mehr A, Kahya E, Olyaie E (2013) Streamflow prediction using linear genetic programming in comparison with a neuro-wavelet technique. J Hydrol 505:240–249. https://doi.org/10.1016/j.jhydrol.2013.10.003

    Article  Google Scholar 

  50. Pathak P, Kalra A, Ahmad S, Bernardez M (2016) Wavelet-Aided Analysis to Estimate Seasonal Variability and Dominant Periodicities in Temperature, Precipitation, and Streamflow in the Midwestern United States. Water Resour Manag 30:4649–4665. https://doi.org/10.1007/s11269-016-1445-0

    Article  Google Scholar 

  51. Sun Y, Niu J, Sivakumar B (2019) A comparative study of models for short-term streamflow forecasting with emphasis on wavelet-based approach. Stoch Environ Res Risk Assess 33:1875–1891. https://doi.org/10.1007/s00477-019-01734-7

    Article  Google Scholar 

  52. Rösch A, Schmidbauer H (2016) WaveletComp 1.1: A guided tour through the R package. URL: http://www.hsstat.com/projects/WaveletComp/WaveletComp_guided_tour.pdf

  53. Zucchini W, MacDonald IL, Langrock R (2016) Hidden Markov Models for Time Series, 2nd ed Chapman and Hall/CRC.

  54. Tibshirani R (1996) Regression Shrinkage and Selection via the Lasso. J R Stat Soc Ser B 58:267–288

    Google Scholar 

  55. Friedman JH, Hastie T, Tibshirani R (2010) Regularization Paths for Generalized Linear Models via Coordinate Descent. J Stat Software 1.

  56. Rocha RV, Souza Filho FDAD, Silva SMOD (2019) Análise da Relação entre a Precipitação Média do Reservatório Orós, Brasil-Ceará, e os índices PDO e AMO Através da Análise de Changepoints e Transformada de Ondeletas. Rev bras meteorol 34(1):139–149. https://doi.org/10.1590/0102-77863340034

    Article  Google Scholar 

  57. Tang C, Chen D, Crosby BT, Piechota TC, Wheaton JM (2014) Is the PDO or AMO the climate driver of soil moisture in the Salmon River Basin, Idaho? Glob Planet Change 120:16–23. https://doi.org/10.1016/j.gloplacha.2014.05.008

    Article  Google Scholar 

  58. Torrence C, Webster PJ (1999) Interdecadal changes in the ENSO–monsoon system. J Clim 12(8):2679–2690

    Article  Google Scholar 

  59. Quilty J, Adamowski J (2018) Addressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting framework. J Hydrol 563:336–353. https://doi.org/10.1016/j.jhydrol.2018.05.003

    Article  Google Scholar 

  60. Marengo JA (2008) Água e mudanças climáticas. Estud Avançados 22:83–96. https://doi.org/10.1590/S0103-40142008000200006

    Article  Google Scholar 

  61. Kayano MT, Andreoli RV (2007) Relations of South American summer rainfall interannual variations with the Pacific Decadal Oscillation. Int J Climatol 27:531–540. https://doi.org/10.1002/joc.1417

    Article  Google Scholar 

  62. Knight JR, Folland CK, Scaife AA (2006) Climate impacts of the Atlantic Multidecadal Oscillation. Geophys Res Lett 33:L17706. https://doi.org/10.1029/2006GL026242

    Article  Google Scholar 

  63. Pontes Filho JD, Souza Filho FA, Martins ESPR, Studart TMC (2020) Copula-Based Multivariate Frequency Analysis of the 2012–2018 Drought in Northeast Brazil. Water 12(3):834. https://doi.org/10.3390/w12030834

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brasil (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES), and the Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (FUNCAP).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, F.A.S.F.; Methodology, L.Z.R.R. and F.A.S.F.; Validation, L.Z.R.R., F.A.S.F. and C.B; Formal Analysis, L.Z.R.R., F.A.S.F. and C.B.; Investigation, L.Z.R.R; Resources, F.A.S.F.; Writing-Original Draft Preparation, L.Z.R.R.; Writing-Review & Editing, L.Z.R.R., F.A.S.F. and C.B; Supervision, F.A.S.F.; Funding Acquisition, F.A.S.F.

Corresponding author

Correspondence to Larissa Zaira Rafael Rolim.

Ethics declarations

Copyright Permission

The authors make sure that all data and figures originate from the authors’ study and there is no copyright issue.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rolim, L.Z.R., de Souza Filho, F.d. & Brown, C. A Multi-model Framework for Streamflow Forecasting Based on Stochastic Models: an Application to the State Of Ceará, Brazil. Water Conserv Sci Eng 8, 7 (2023). https://doi.org/10.1007/s41101-023-00184-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41101-023-00184-1

Keywords

Navigation