Log in

A New Algorithm for the Partition of Pearson’s Chi-Squared Statistic for Multiway Contingency Table

  • Research Article
  • Published:
Journal of the Indian Society for Probability and Statistics Aims and scope Submit manuscript

Abstract

Pearson’s chi-squared statistic is one of the most common statistical tools used to assess the association between two or more categorical variables that have been cross-classified to form a contingency table. In many practical settings, multiple categorical variables are “paired-off” and analysed by identifying association structures between two variables only. However, there are less well-known tools that allow the analyst to explore the association structure of categorical variables that form a multi-way contingency table. This paper presents an ANOVA-like decomposition of the chi-squared statistic for four-way and five-way contingency tables and can be extended for the analysis of higher-way contingency tables. Furthermore, we propose an efficient algorithm for partitioning the statistic that leads to two-way and higher-way terms. The proposed algorithm reduces the complexity involved in the calculation of the terms of the partition and will be demonstrated by way of a simulation and practical example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azen R, Walker CM (2011) Categorical data analysis for the behavioral and social sciences. Routledge, London

    Book  Google Scholar 

  • Beh EJ, Davy PJ (1998) Partitioning Pearson’s chi-squared Statistic for a completely ordered three-way contingency table. Aust N Z J Stat 40:465–477

    Article  MathSciNet  Google Scholar 

  • Beh EJ, Davy PJ (1999) Partitioning Pearson’s chi-squared statistic for a partially ordered three-way contingency table. Aust N Z J Stat 41:233–246

    Article  MathSciNet  Google Scholar 

  • Beh EJ, Lombardo R (2014) Correspondence analysis: theory practice and new strategies. Wiley, Chichester

    Book  Google Scholar 

  • Carlier A, Kroonenberg PM (1996) Decompositions and biplots in three-way correspondence analysis. Psychometrika 61:355–373

    Article  Google Scholar 

  • Cochran WG (1952) The χ2 Test of goodness of fit. Ann Math Stat 23:315–345

    Article  Google Scholar 

  • Cochran WG (1954) Some methods for strengthening the common χ2 tests. Biometrics 10:417–451

    Article  MathSciNet  Google Scholar 

  • D’Ambra A, Amenta P (2011) Correspondence analysis with linear constraints of ordinal cross-classifications. J Classif 28:70–92

    Article  MathSciNet  Google Scholar 

  • D’Ambra L, Beh EJ, Amenta P (2005) CATANOVA for two-way contingency tables with ordinal variables using orthogonal polynomials. Commun Stat-Theor Methods 34:1755–1769

    Article  MathSciNet  Google Scholar 

  • D’Ambra L, D’Ambra A, Sarnacchiaro P (2012) Visualizing main effects and interaction in multiple non-symmetric correspondence analysis. J Appl Stat 39:2165–2175

    Article  MathSciNet  Google Scholar 

  • De Lathauwer L, De Moor B, Vandewalle J (2000) A multilinear singular value decomposition. SIAM J Matrix Anal Appl 21(4):1253–1278

    Article  MathSciNet  Google Scholar 

  • Goodman L, Kruskal W (1954) Measures of association for cross-classifications. J Am Stat Assoc 49:732–764

    Google Scholar 

  • Gray LN, Williams JS (1975) Goodman and Kruskal’s tau b: multiple and partial analogs, American Statistical Association (Proceedings of the Social Statistics Section), p 444–448

  • Greenacre MJ (1984) Theory and applications of correspondence analysis. Academic Press, London

    Google Scholar 

  • Jarausch KH, Arminger G (1989) The German teaching profession and Nazi party membership: a demographic logit model. J Interdiscip Hist 20:197–225

    Article  Google Scholar 

  • Kolda TG, Bader BW (2009) Tensor decompositions and applications. SIAM Rev 51:455–500

    Article  MathSciNet  Google Scholar 

  • Kroonenberg PM (1989) Singular value decomposition of interactions in three-way contingency tables. In: Coppi R, Bolasco S (eds) Multiway data analysis. North Holland, Amsterdam, pp 169–184

    Google Scholar 

  • Kroonenberg PM (2008) Applied multiway data analysis. Wiley, NJ

    Book  Google Scholar 

  • Lancaster HO (1951) Complex contingency tables treated by the partition of the chi-square. J R Stat Soc, Ser B 13:242–249

    Article  Google Scholar 

  • Lebart L, Morineau A, Warwick KM (1984) Multivariate descriptive statistical analysis. Wiley

    Google Scholar 

  • Loisel S, Takane Y (2016) Partitions of Pearson’s chi-square statistic for frequency tables: a comprehensive account. Comput Stat 31:1429–1452

    Article  MathSciNet  Google Scholar 

  • Lombardo R, Beh EJ (2021) CAvariants package. https://cran.r-project.org/web/packages/CAvariants/index.html

  • Lombardo R (1994) Models of decomposition for the analysis of the dependence in three-way contingency tables (in Italian). Unpublished PhD Thesis. Department of Mathematics and Statistics, University of Naples Federico II

  • Lombardo R (2011) Three-way association measure decompositions: the delta index. J Stat Plan Inference 141:1789–1799

    Article  MathSciNet  Google Scholar 

  • Lombardo R, Beh EJ, Kroonenberg PM (2021) Symmetrical and non-symmetrical variants of three-way correspondence analysis for ordered variables. Stat Sci 36(4):542–561

    Article  MathSciNet  Google Scholar 

  • Lombardo R, Beh EJ, Michel van de V (2022) CA3variants package. https://cran.r-project.org/web/packages/CA3variants/index.html

  • Lombardo R, Carlier A, D’Ambra L (1996) Non-symmetric correspondence analysis for three-way contingency tables. Methodologica 4:59–80

    Google Scholar 

  • Lombardo R, Takane Y, Beh EJ (2017) Chi2x3way package. https://cran.r-project.org/web/packages/chi2x3way/index.html

  • Lombardo R , Takane Y, Beh E (2020) Familywise decompositions of Pearson’s chi-square statistic in the analysis of contingency tables. Adv Data Anal Classif 14:629–649

  • Loughin TM, Scherer PN (1998) Testing for association in contingency tables with multiple column responses. Biometrics 54:630–637

    Article  Google Scholar 

  • Luo J, Wu M, Gopukumar D, Zhao Y (2016) Big data application in biomedical research and health care: a literature review. Biomed Inform Insights 8:1–10

    Article  Google Scholar 

  • Marcotorchino F (1984) Utilisation des Comparaisons par Paires en Statistique des Contingencies Partie II, Report # F071, Etude du Centre Scientifique, IBM, France

  • Tsai CW, Lai CF, Chao HC, Vasilakos AV (2015) Big data analytics: a survey. J Big Data 2(21):1–31

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Referees for their constructive comments and suggestions, which improved the manuscript significantly.

Funding

The second author would like to thank University Grants Commission, New Delhi, India for awarding Rajiv Gandhi National Fellowship (Award No.: F1-17.1/2011-12/RGNF-SC-MAH-5331) for pursuing a Ph.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirtee K. Kamalja.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Consider a classification of \(n\) individuals based on five categorical variables \({A}_{1},{A}_{2},{A}_{3},{A}_{4}\) and \({A}_{5}\). Let \({j}_{k}\) be the number of categories of the \({k}^{th}\) variable, for \(k=1, 2, \dots , 5\) and the joint frequencies be summarised into a five-way contingency table \({\varvec{N}}=({n}_{{i}_{1}{i}_{2}{i}_{3}{i}_{4}{i}_{5}})\) of dimension \({j}_{1}\times {j}_{2}\times {j}_{3}\times {j}_{4}\times {j}_{5}\). Let \({\varvec{P}}=\left({p}_{{i}_{1}{i}_{2}{i}_{3}{i}_{4}{i}_{5}}\right)\) be the table of relative proportions such that \({\varvec{P}}=\frac{1}{n}{\varvec{N}}\).

The total inertia \({\Phi }^{2}\) based on the deviations from the five-way complete independence model is

$${\Phi }^{2} = \mathop \sum \limits_{{i_{1} ,i_{2} ,i_{3} ,i_{4} ,i_{5} }}^{{}} \frac{{\left( {p_{{i_{1} i_{2} i_{3} i_{4} i_{5} }} - p_{{i_{1} ....}} p_{{.i_{2} ...}} p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} p_{{ \ldots .i_{5} }} } \right)^{2} }}{{p_{{i_{1} ...}} p_{{.i_{2} ..}} p_{{..i_{3} .}} p_{{ \ldots i_{4} }} p_{{ \ldots .i_{5} }} }}.$$

The total inertia \({\Phi }^{2}\) can be expressed as a squared norm of \(\boldsymbol{\Pi }=({\pi }_{{i}_{1}{i}_{2}{i}_{3}{i}_{4}{i}_{5}})\) in \({\mathbb{R}}^{{j}_{1}\times {j}_{2}\times {j}_{3}\times {j}_{4}\times {j}_{5}}\) where

$$\pi_{{i_{1} i_{2} i_{3} i_{4} i_{5} }} = \frac{{p_{{i_{1} i_{2} i_{3} i_{4} i_{5} }} }}{{p_{{i_{1} ...}} p_{{.i_{2} ..}} p_{{..i_{3} .}} p_{{ \ldots i_{4} }} p_{{ \ldots .i_{5} }} }} - 1,$$

And \({\Vert \boldsymbol{\Pi }\Vert }^{2}=\sum_{{i}_{1},{i}_{2},{i}_{3},{i}_{4},{i}_{5}}{p}_{{i}_{1}\dots .}{p}_{.{i}_{2}...}{p}_{..{i}_{3}..}{p}_{\dots {i}_{4}.}{p}_{\dots .{i}_{5}}{\left({\pi }_{{i}_{1}{i}_{2}{i}_{3}{i}_{4}{i}_{5}}\right)}^{2}\).

Now, \(\boldsymbol{\Pi }\) can be expressed as the addition of twenty-six orthogonal arrays that consist of 5C2 = 10 two-way, 5C3 = 10 three-way, 5C4 = 5 four-way and 5C5 = 1 five-way association terms. That is

$$\begin{aligned}{\varvec{\varPi}}=\, &{\varvec{\varPi}}_{{{\varvec{i}}_{1} {\varvec{i}}_{2} ...}} +{\varvec{\varPi}}_{{{\varvec{i}}_{1} .{\varvec{i}}_{3} ..}} +{\varvec{\varPi}}_{{{\varvec{i}}_{1} ..{\varvec{i}}_{4} .}} +{\varvec{\varPi}}_{{{\varvec{i}}_{1} ...{\varvec{i}}_{5} }} +{\varvec{\varPi}}_{{.{\varvec{i}}_{2} {\varvec{i}}_{3} ..}} +{\varvec{\varPi}}_{{.{\varvec{i}}_{2} .{\varvec{i}}_{4} .}} +{\varvec{\varPi}}_{{.{\varvec{i}}_{2} ..{\varvec{i}}_{5} }} +{\varvec{\varPi}}_{{..{\varvec{i}}_{3} {\varvec{i}}_{4} .}} +{\varvec{\varPi}}_{{..{\varvec{i}}_{3} .{\varvec{i}}_{5} }} \\ \quad & + {{\varvec{\Pi}}}_{{...{\varvec{i}}_{4} {\varvec{i}}_{5} }} + {}_{{\varvec{\alpha}}}{\varvec{\varPi}}_{{{\varvec{i}}_{1} {\varvec{i}}_{2} {\varvec{i}}_{3} ..}} + {}_{{\varvec{\alpha}}}{\varvec{\varPi}}_{{{\varvec{i}}_{1} {\varvec{i}}_{2} .{\varvec{i}}_{4} .}} + {}_{{\varvec{\alpha}}}{\varvec{\varPi}}_{{{\varvec{i}}_{1} {\varvec{i}}_{2} ..{\varvec{i}}_{5} }} + {}_{{\varvec{\alpha}}}{\varvec{\varPi}}_{{{\varvec{i}}_{1} .{\varvec{i}}_{3} {\varvec{i}}_{4} .}} + {}_{{\varvec{\alpha}}}{\varvec{\varPi}}_{{{\varvec{i}}_{1} .{\varvec{i}}_{3} .{\varvec{i}}_{5} }} + {}_{{\varvec{\alpha}}}{\varvec{\varPi}}_{{{\varvec{i}}_{1} ..{\varvec{i}}_{4} {\varvec{i}}_{5} }} \\ \quad & + {}_{{\varvec{\alpha}}}{\varvec{\varPi}}_{{.{\varvec{i}}_{2} {\varvec{i}}_{3} {\varvec{i}}_{4} .}} + {}_{{\varvec{\alpha}}}{\varvec{\varPi}}_{{.{\varvec{i}}_{2} {\varvec{i}}_{3} .{\varvec{i}}_{5} }} + {}_{{\varvec{\alpha}}}{\varvec{\varPi}}_{{.{\varvec{i}}_{2} .{\varvec{i}}_{4} {\varvec{i}}_{5} }} + {}_{{\varvec{\alpha}}}{\varvec{\varPi}}_{{..{\varvec{i}}_{3} {\varvec{i}}_{4} {\varvec{i}}_{5} }} + {}_{{\varvec{\alpha}}}{\varvec{\varPi}}_{{{\varvec{i}}_{1} {\varvec{i}}_{2} {\varvec{i}}_{3} {\varvec{i}}_{4} .}} \\ \quad & + {}_{{\varvec{\alpha}}}{\varvec{\varPi}}_{{{\varvec{i}}_{1} {\varvec{i}}_{2} {\varvec{i}}_{3} .{\varvec{i}}_{5} }} + {}_{{\varvec{\alpha}}}{\varvec{\varPi}}_{{{\varvec{i}}_{1} {\varvec{i}}_{2} .{\varvec{i}}_{4} {\varvec{i}}_{5} }} + {}_{{\varvec{\alpha}}}{\varvec{\varPi}}_{{{\varvec{i}}_{1} .{\varvec{i}}_{3} {\varvec{i}}_{4} {\varvec{i}}_{5} }} + {}_{{\varvec{\alpha}}}{\varvec{\varPi}}_{{.{\varvec{i}}_{2} {\varvec{i}}_{3} {\varvec{i}}_{4} {\varvec{i}}_{5} }} + {}_{{\varvec{\alpha}}}{\varvec{\varPi}}_{{{\varvec{i}}_{1} {\varvec{i}}_{2} {\varvec{i}}_{3} {\varvec{i}}_{4} {\varvec{i}}_{5} }} \\ \end{aligned}$$

where

$$\begin{aligned} {\uppi }_{{i_{1} i_{2} ...}} = \,& \frac{{p_{{i_{1} i_{2} ...}} - p_{{i_{1} . \ldots }} p_{{.i_{2} ...}} }}{{p_{{i_{1} \ldots .}} p_{{.i_{2} \ldots }} }},\;{\uppi }_{{i_{1} .i_{3} ..}} = \frac{{p_{{i_{1} ..i_{3} ..}} - p_{{i_{1} . \ldots }} p_{{..i_{3} ..}} }}{{p_{{i_{1} . \ldots }} p_{{..i_{3} ..}} }},\;{\uppi }_{{i_{1} ..i_{4} .}} = \frac{{p_{{i_{1} ..i_{4} .}} - p_{{i_{1} . \ldots }} p_{{...i_{4} .}} }}{{p_{{i_{1} . \ldots }} p_{{...i_{4} .}} }}, \\ {\uppi }_{{i_{1} ...i_{5} }} = & \frac{{p_{{i_{1} ...i_{5} }} - p_{{i_{1} . \ldots }} p_{{ \ldots .i_{5} }} }}{{p_{{i_{1} . \ldots }} p_{{ \ldots .i_{5} }} }},\;{\uppi }_{{.i_{2} i_{3} ..}} = \frac{{p_{{.i_{2} i_{3} ...}} - p_{{.i_{2} ...}} p_{{..i_{3} ..}} }}{{p_{{.i_{2} ...}} p_{{..i_{3} ..}} }},\;{\uppi }_{{.i_{2} .i_{4} .}} = \frac{{p_{{.i_{2} .i_{4} .}} - p_{{.i_{2} ...}} p_{{...i_{4} .}} }}{{p_{{.i_{2} ...}} p_{{...i_{4} .}} }}, \\ {\uppi }_{{.i_{2} ..i_{5} }} = & \frac{{p_{{.i_{2} ..i_{5} }} - p_{{.i_{2} \ldots .}} p_{{....i_{5} }} }}{{p_{{.i_{2} ....}} p_{{....i_{5} }} }},\;{\uppi }_{{..i_{3} i_{4} .}} = \frac{{p_{{..i_{3} i_{4} .}} - p_{{..i_{3} ..}} p_{{...i_{4} .}} }}{{p_{{..i_{3} ..}} p_{{...i_{4} .}} }},\;{\uppi }_{{..i_{3} .i_{5} }} = \frac{{p_{{..i_{3} .i_{5} }} - p_{{..i_{3} ..}} p_{{ \ldots .i_{5} }} }}{{p_{{..i_{3} ..}} p_{{....i_{5} }} }}, \\ {\uppi }_{{...i_{4} i_{5} }} = & \frac{{p_{{ \ldots i_{4} i_{5} }} - p_{{...i_{4} .}} p_{{ \ldots .i_{5} }} }}{{p_{{...i_{4} .}} p_{{....i_{5} }} }},\; \\ \end{aligned}$$
$$\begin{aligned} {}_{\alpha }\pi_{{i_{1} i_{2} i_{3} ..}} = \,& \frac{{p_{{i_{1} i_{2} i_{3} ..}} - {}_{\alpha }^{{}} p_{{i_{1} i_{2} i_{3} ..}} }}{{p_{{i_{1} \ldots .}} p_{{.i_{2} ...}} p_{{..i_{3} ..}} }},\;{}_{\alpha }\pi_{{i_{1} i_{2} .i_{4} .}} = \frac{{p_{{i_{1} i_{2} .i_{4} .}} - {}_{\alpha }^{{}} p_{{i_{1} i_{2} .i_{4} .}} }}{{p_{{i_{1} . \ldots }} p_{{.i_{2} ...}} p_{{...i_{4} .}} }}, \\ {}_{\alpha }\pi_{{i_{1} i_{2} ..i_{5} }} = & \frac{{p_{{i_{1} i_{2} ..i_{5} }} - {}_{\alpha }^{{}} p_{{i_{1} i_{2} ..i_{5} }} }}{{p_{{i_{1} . \ldots }} p_{{.i_{2} ...}} p_{{....i_{5} }} }},\;{}_{\alpha }\pi_{{i_{1} .i_{3} i_{4} .}} = \frac{{p_{{i_{1} .i_{3} i_{4} .}} - {}_{\alpha }^{{}} p_{{i_{1} .i_{3} i_{4} .}} }}{{p_{{i_{1} . \ldots }} p_{{..i_{3} ..}} p_{{...i_{4} .}} }}, \\ {}_{\alpha }\pi_{{i_{1} .i_{3} .i_{5} }} = & \frac{{p_{{i_{1} .i_{3} .i_{5} }} - {}_{\alpha }^{{}} p_{{i_{1} .i_{3} .i_{5} }} }}{{p_{{i_{1} . \ldots }} p_{{..i_{3} ..}} p_{{....i_{5} }} }},\;{}_{\alpha }\pi_{{i_{1} ..i_{4} i_{5} }} = \frac{{p_{{i_{1} ..i_{4} i_{5} }} - {}_{\alpha }^{{}} p_{{i_{1} ..i_{4} i_{5} }} }}{{p_{{i_{1} . \ldots }} p_{{...i_{4} .}} p_{{....i_{5} }} }}, \\ {}_{\alpha }\pi_{{.i_{2} i_{3} i_{4} .}} = & \frac{{p_{{.i_{2} i_{3} i_{4} .}} - {}_{\alpha }^{{}} p_{{.i_{2} i_{3} i_{4} .}} }}{{p_{{.i_{2} ...}} p_{{..i_{3} ..}} p_{{...i_{4} .}} }},\;{}_{\alpha }\pi_{{.i_{2} i_{3} .i_{5} }} = \frac{{p_{{.i_{2} i_{3} .i_{5} }} - {}_{\alpha }^{{}} p_{{.i_{2} i_{3} .i_{5} }} }}{{p_{{.i_{2} ...}} p_{{..i_{3} ..}} p_{{. \ldots i_{5} }} }}, \\ {}_{\alpha }\pi_{{.i_{2} .i_{4} i_{5} }} = & \frac{{p_{{.i_{2} .i_{4} i_{5} }} - {}_{\alpha }^{{}} p_{{.i_{2} .i_{4} i_{5} }} }}{{p_{{.i_{2} ...}} p_{{...i_{4} .}} p_{{. \ldots i_{5} }} }},\;{}_{\alpha }\pi_{{..i_{3} i_{4} i_{5} }} = \frac{{p_{{..i_{3} i_{4} i_{5} }} - {}_{\alpha }^{{}} p_{{..i_{3} i_{4} i_{5} }} }}{{p_{{..i_{3} ..}} p_{{...i_{4} .}} p_{{. \ldots i_{5} }} }}, \\ {}_{\alpha }\Pi_{{i_{1} i_{2} i_{3} i_{4} .}} = & \frac{{p_{{i_{1} i_{2} i_{3} i_{4} .}} - {}_{\alpha }^{{}} p_{{i_{1} i_{2} i_{3} i_{4} .}} }}{{p_{{i_{1} \ldots .}} p_{{.i_{2} ...}} p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} }},\;{}_{\alpha }\Pi_{{i_{1} i_{2} i_{3} .i_{5} }} = \frac{{p_{{i_{1} i_{2} i_{3} .i_{5} }} - {}_{\alpha }^{{}} p_{{i_{1} i_{2} i_{3} .i_{5} }} }}{{p_{{i_{1} \ldots .}} p_{{.i_{2} ...}} p_{{..i_{3} ..}} p_{{ \ldots .i_{5} }} }}, \\ {}_{\alpha }\Pi_{{i_{1} i_{2} .i_{4} i_{5} }} = & \frac{{p_{{i_{1} i_{2} .i_{4} i_{5} }} - {}_{\alpha }^{{}} p_{{i_{1} i_{2} i_{4} .i_{5} }} }}{{p_{{i_{1} \ldots .}} p_{{.i_{2} ...}} p_{{...i_{4} .}} p_{{ \ldots .i_{5} }} }},\;\Pi_{{i_{1} i_{3} .i_{4} i_{5} }} = \frac{{p_{{i_{1} .i_{3} i_{4} i_{5} }} - {}_{\alpha }^{{}} p_{{i_{1} .i_{3} i_{4} i_{5} }} }}{{p_{{i_{1} \ldots .}} p_{{..i_{3} ..}} p_{{...i_{4} .}} p_{{ \ldots .i_{5} }} }}, \\ {}_{\alpha }\Pi_{{.i_{2} i_{3} i_{4} i_{5} }} = & \frac{{p_{{.i_{2} i_{3} i_{4} i_{5} }} - {}_{\alpha }^{{}} p_{{.i_{2} i_{3} i_{4} i_{5} }} }}{{p_{{.i_{2} ...}} p_{{..i_{3} ..}} p_{{...i_{4} .}} p_{{ \ldots .i_{5} }} }},\;{}_{\alpha }\pi_{{i_{1} i_{2} i_{3} i_{4} i_{5} }} = \frac{{p_{{i_{1} i_{2} i_{3} i_{4} i_{5} }} - {}_{\alpha }^{{}} p_{{i_{1} i_{2} i_{3} i_{4} i_{5} }} }}{{p_{{i_{1} . \ldots }} p_{{.i_{2} ...}} p_{{..i_{3} ..}} p_{{...i_{4} .}} p_{{. \ldots i_{5} }} }}, \\ \end{aligned}$$
$$\begin{aligned} {}_{\alpha }p_{{i_{1} i_{2} i_{3} i_{4} .}} = \,& p_{{i_{1} i_{2} \ldots }} p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} + p_{{i_{1} .i_{3} ..}} p_{{.i_{2} \ldots }} p_{{ \ldots i_{4} .}} + p_{{i_{1} ..i_{4} .}} p_{{.i_{2} \ldots }} p_{{..i_{3} ..}} + p_{{.i_{2} i_{3} ..}} p_{{i_{1} \ldots .}} p_{{ \ldots i_{4} .}} \\ \quad & + ~p_{{.i_{2} .i_{4} .}} p_{{i_{1} \ldots .}} p_{{..i_{3} ..}} + p_{{..i_{3} i_{4} .}} p_{{i_{1} \ldots .}} p_{{.i_{2} \ldots }} + p_{{i_{1} i_{2} i_{3} ..}} p_{{ \ldots i_{4} .}} + p_{{i_{1} i_{2} .i_{4} .}} p_{{..i_{3} ..}} \\ \quad & + p_{{.i_{2} i_{3} i_{4} .}} p_{{i_{1} \ldots .}} + ~p_{{i_{1} .i_{3} i_{4} .}} p_{{.i_{2} ...}} + 9p_{{i_{1} \ldots .}} p_{{.i_{2} ...}} p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} , \\ {}_{\alpha }p_{{i_{1} i_{2} i_{3} .i_{5} }} = & p_{{i_{1} i_{2} ...}} p_{{..i_{3} ..}} p_{{ \ldots .i_{5} }} + p_{{i_{1} .i_{3} ..}} p_{{.i_{2} ...}} p_{{ \ldots .i_{5} }} + p_{{i_{1} ...i_{5} }} p_{{.i_{2} ...}} p_{{..i_{3} ..}} + p_{{.i_{2} i_{3} ..}} p_{{i_{1} \ldots .}} p_{{ \ldots .i_{5} }} \\ \quad & + ~p_{{.i_{2} ..i_{5} }} p_{{i_{1} \ldots .}} p_{{..i_{3} ..}} + p_{{..i_{3} .i_{5} }} p_{{i_{1} \ldots .}} p_{{.i_{2} \ldots }} + p_{{i_{1} i_{2} i_{3} ..}} p_{{ \ldots .i_{5} }} + p_{{i_{1} i_{2} ..i_{5} }} p_{{..i_{3} ..}} \\ \quad & + p_{{.i_{2} i_{3} .i_{5} }} p_{{i_{1} \ldots .}} + ~p_{{i_{1} .i_{3} .i_{5} }} p_{{.i_{2} ...}} + 9p_{{i_{1} \ldots .}} p_{{.i_{2} ...}} p_{{..i_{3} ..}} p_{{ \ldots .i_{5} }} , \\ {}_{\alpha }p_{{i_{1} i_{2} .i_{4} i_{5} }} = & p_{{i_{1} i_{2} ...}} p_{{ \ldots i_{4} .}} p_{{ \ldots .i_{5} }} + p_{{i_{1} ..i_{4} .}} p_{{.i_{2} ...}} p_{{ \ldots .i_{5} }} + p_{{i_{1} ...i_{5} }} p_{{.i_{2} ...}} p_{{...i_{4} .}} + p_{{.i_{2} .i_{4} .}} p_{{i_{1} \ldots .}} p_{{ \ldots .i_{5} }} \\ \quad & + ~p_{{.i_{2} ..i_{5} }} p_{{i_{1} \ldots .}} p_{{ \ldots i_{4} .}} + p_{{ \ldots i_{4} i_{5} }} p_{{i_{1} \ldots .}} p_{{.i_{2} \ldots }} + p_{{i_{1} i_{2} .i_{4} .}} p_{{ \ldots .i_{5} }} + p_{{i_{1} i_{2} ..i_{5} }} p_{{...i_{4} .}} \\ \quad & + ~p_{{.i_{2} .i_{4} i_{5} }} p_{{i_{1} \ldots .}} + ~p_{{i_{1} ..i_{4} i_{5} }} p_{{.i_{2} ...}} + 9p_{{i_{1} \ldots .}} p_{{.i_{2} ...}} p_{{ \ldots i_{4} .}} p_{{ \ldots .i_{5} }} , \\ {}_{\alpha }p_{{i_{1} .i_{3} i_{4} i_{5} }} = & p_{{i_{1} .i_{3} ..}} p_{{ \ldots i_{4} .}} p_{{ \ldots .i_{5} }} + p_{{i_{1} ..i_{4} .}} p_{{..i_{3} ..}} p_{{ \ldots .i_{5} }} + p_{{i_{1} ...i_{5} }} p_{{..i_{3} ..}} p_{{...i_{4} .}} + p_{{..i_{3} i_{4} .}} p_{{i_{1} \ldots .}} p_{{ \ldots .i_{5} }} \\ \quad & + ~p_{{..i_{3} .i_{5} }} p_{{i_{1} \ldots .}} p_{{ \ldots i_{4} .}} + p_{{ \ldots i_{4} i_{5} }} p_{{i_{1} \ldots .}} p_{{..i_{3} }} + p_{{i_{1} .i_{3} i_{4} .}} p_{{ \ldots .i_{5} }} + p_{{i_{1} .i_{3} .i_{5} }} p_{{...i_{4} .}} \\ \quad & + ~p_{{..i_{3} i_{4} i_{5} }} p_{{i_{1} \ldots .}} + ~p_{{i_{1} ..i_{4} i_{5} }} p_{{..i_{3} ..}} + 9p_{{i_{1} \ldots .}} p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} p_{{ \ldots .i_{5} }} , \\ {}_{\alpha }p_{{.i_{2} i_{3} i_{4} i_{5} }} = & p_{{.i_{2} i_{3} ..}} p_{{ \ldots i_{4} .}} p_{{ \ldots .i_{5} }} + p_{{.i_{2} .i_{4} .}} p_{{..i_{3} ..}} p_{{ \ldots .i_{5} }} + p_{{.i_{2} ..i_{5} }} p_{{..i_{3} ..}} p_{{...i_{4} .}} + p_{{..i_{3} i_{4} .}} p_{{.i_{2} \ldots }} p_{{ \ldots .i_{5} }} \\ \quad & + ~p_{{..i_{3} .i_{5} }} p_{{.i_{2} \ldots }} p_{{ \ldots i_{4} .}} + p_{{ \ldots i_{4} i_{5} }} p_{{.i_{2} \ldots }} p_{{..i_{3} }} + p_{{.i_{2} i_{3} i_{4} .}} p_{{ \ldots .i_{5} }} + p_{{.i_{2} i_{3} .i_{5} }} p_{{...i_{4} .}} \\ \quad & + ~p_{{..i_{3} i_{4} i_{5} }} p_{{.i_{2} \ldots }} + ~p_{{.i_{2} .i_{4} i_{5} }} p_{{..i_{3} ..}} + 9p_{{.i_{2} \ldots }} p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} p_{{ \ldots .i_{5} }} , \\ {\text{and}}\;{}_{\alpha }p_{{i_{1} i_{2} i_{3} i_{4} i_{5} }} = & p_{{i_{1} i_{2} ...}} p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} p_{{ \ldots .i_{5} }} + p_{{i_{1} .i_{3} ..}} p_{{.i_{2} \ldots }} p_{{ \ldots i_{4} .}} p_{{ \ldots .i_{5} }} + p_{{i_{1} ..i_{4} .}} p_{{.i_{2} \ldots }} p_{{..i_{3} ..}} p_{{ \ldots .i_{5} }} \\ \quad & + ~p_{{i_{1} ...i_{5} }} p_{{.i_{2} \ldots }} p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} + p_{{.i_{2} i_{3} ..}} p_{{i_{1} . \ldots }} p_{{ \ldots i_{4} .}} p_{{ \ldots .i_{5} }} + p_{{.i_{2} i_{4} .}} p_{{i_{1} . \ldots }} p_{{..i_{3} ..}} p_{{ \ldots .i_{5} }} + \\ \quad & + ~p_{{.i_{2} ..i_{5} }} p_{{i_{1} . \ldots }} p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} + p_{{i_{1} i_{2} i_{3} ..}} p_{{ \ldots i_{4} .}} p_{{ \ldots .i_{5} }} + p_{{i_{1} i_{2} i_{4} .}} p_{{..i_{3} ..}} p_{{ \ldots .i_{5} }} \\ \quad & + ~p_{{i_{1} i_{2} ..i_{5} }} p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} + p_{{i_{1} .i_{3} i_{4} .}} p_{{.i_{2} \ldots }} p_{{ \ldots .i_{5} }} + p_{{i_{1} .i_{3} .i_{5} }} p_{{.i_{2} \ldots }} p_{{ \ldots i_{4} .}} \\ \quad & + ~p_{{i_{1} ..i_{4} i_{5} }} p_{{.i_{2} \ldots }} p_{{..i_{3} ..}} + p_{{.i_{2} i_{3} i_{4} .}} p_{{i_{1} . \ldots }} p_{{ \ldots .i_{5} }} + p_{{.i_{2} i_{3} .i_{5} }} p_{{i_{1} . \ldots }} p_{{ \ldots i_{4} .}} \\ \quad & + ~p_{{.i_{2} .i_{4} i_{5} }} p_{{i_{1} . \ldots }} p_{{..i_{3} ..}} + p_{{..i_{3} i_{4} i_{5} }} p_{{i_{1} . \ldots }} p_{{.i_{2} ...}} + p_{{i_{1} i_{2} i_{3} i_{4} .}} p_{{....i_{5} }} + p_{{i_{1} i_{2} i_{3} .i_{5} }} p_{{...i_{4} .}} \\ \quad & + ~p_{{i_{1} i_{2} .i_{4} i_{5} }} p_{{..i_{3} ..}} + p_{{i_{1} .i_{3} i_{4} i_{5} }} p_{{.i_{2} ...}} + p_{{i_{2} i_{3} i_{4} i_{5} }} p_{{i_{1} ....}} \\ \quad & + ~24p_{{i_{1} \ldots .}} p_{{.i_{2} \ldots }} p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} p_{{....i_{5} }} . \\ \end{aligned}$$

Thus, an additive partition of the squared norm of a five-way array \(\Pi\) can be expressed as

$$\begin{aligned}{\varvec{\varPi}}^{2} = \,&{\varvec{\varPi}}_{{{\varvec{i}}_{1} {\varvec{i}}_{2} ...}}^{2} +{\varvec{\varPi}}_{{{\varvec{i}}_{1} .{\varvec{i}}_{3} ..}}^{2} +{\varvec{\varPi}}_{{{\varvec{i}}_{1} ..{\varvec{i}}_{4} .}}^{2} +{\varvec{\varPi}}_{{{\varvec{i}}_{1} ...{\varvec{i}}_{5} }}^{2} +{\varvec{\varPi}}_{{.{\varvec{i}}_{2} {\varvec{i}}_{3} ..}}^{2} +{\varvec{\varPi}}_{{.{\varvec{i}}_{2} .{\varvec{i}}_{4} .}}^{2} \\ \quad & + {{\varvec{\Pi}}}_{{.{\varvec{i}}_{2} ..{\varvec{i}}_{5} }}^{2} + {{\varvec{\Pi}}}_{{..{\varvec{i}}_{3} {\varvec{i}}_{4} .}}^{2} + {{\varvec{\Pi}}}_{{..{\varvec{i}}_{3} .{\varvec{i}}_{5} }}^{2} + {{\varvec{\Pi}}}_{{...{\varvec{i}}_{4} {\varvec{i}}_{5} }}^{2} + {}_{{\varvec{\alpha}}}^{{}}{\varvec{\varPi}}_{{{\varvec{i}}_{1} {\varvec{i}}_{2} {\varvec{i}}_{3} ..}}^{2} \\ \quad & + {}_{{\varvec{\alpha}}}^{{}}{\varvec{\varPi}}_{{{\varvec{i}}_{1} {\varvec{i}}_{2} .{\varvec{i}}_{4} .}}^{2} + {}_{{\varvec{\alpha}}}^{{}}{\varvec{\varPi}}_{{{\varvec{i}}_{1} {\varvec{i}}_{2} ..{\varvec{i}}_{5} }}^{2} + {}_{{\varvec{\alpha}}}^{{}}{\varvec{\varPi}}_{{{\varvec{i}}_{1} .{\varvec{i}}_{3} {\varvec{i}}_{4} .}}^{2} + {}_{{\varvec{\alpha}}}^{{}}{\varvec{\varPi}}_{{{\varvec{i}}_{1} .{\varvec{i}}_{3} .{\varvec{i}}_{5} }}^{2} \\ \quad & + {}_{{\varvec{\alpha}}}^{{}}{\varvec{\varPi}}_{{{\varvec{i}}_{1} ..{\varvec{i}}_{4} {\varvec{i}}_{5} }}^{2} + {}_{{\varvec{\alpha}}}^{{}}{\varvec{\varPi}}_{{.{\varvec{i}}_{2} {\varvec{i}}_{3} {\varvec{i}}_{4} .}}^{2} + {}_{{\varvec{\alpha}}}^{{}}{\varvec{\varPi}}_{{.{\varvec{i}}_{2} {\varvec{i}}_{3} .{\varvec{i}}_{5} }}^{2} + {}_{{\varvec{\alpha}}}^{{}}{\varvec{\varPi}}_{{.{\varvec{i}}_{2} .{\varvec{i}}_{4} {\varvec{i}}_{5} }}^{2} \\ \quad & + {}_{{\varvec{\alpha}}}^{{}}{\varvec{\varPi}}_{{..{\varvec{i}}_{3} {\varvec{i}}_{4} {\varvec{i}}_{5} }}^{2} + {}_{{\varvec{\alpha}}}^{{}}{\varvec{\varPi}}_{{{\varvec{i}}_{1} {\varvec{i}}_{2} {\varvec{i}}_{3} {\varvec{i}}_{4} .}}^{2} + {}_{{\varvec{\alpha}}}^{{}}{\varvec{\varPi}}_{{{\varvec{i}}_{1} {\varvec{i}}_{2} {\varvec{i}}_{3} .{\varvec{i}}_{5} }}^{2} + {}_{{\varvec{\alpha}}}^{{}}{\varvec{\varPi}}_{{{\varvec{i}}_{1} {\varvec{i}}_{2} .{\varvec{i}}_{4} {\varvec{i}}_{5} }}^{2} \\ \quad & + {}_{{\varvec{\alpha}}}^{{}}{\varvec{\varPi}}_{{{\varvec{i}}_{1} .{\varvec{i}}_{3} {\varvec{i}}_{4} {\varvec{i}}_{5} }}^{2} + {}_{{\varvec{\alpha}}}^{{}}{\varvec{\varPi}}_{{.{\varvec{i}}_{2} {\varvec{i}}_{3} {\varvec{i}}_{4} {\varvec{i}}_{5} }}^{2} + {}_{{\varvec{\alpha}}}^{{}}{\varvec{\varPi}}_{{{\varvec{i}}_{1} {\varvec{i}}_{2} {\varvec{i}}_{3} {\varvec{i}}_{4} {\varvec{i}}_{5} }}^{2} . \\ \end{aligned}$$

This partition can be equivalently expressed in terms of table’s inertia such that

$$\begin{aligned} \Phi ^{2} = \,& \mathop \sum \limits_{{i_{1} ,i_{2} }} p_{{i_{1} \ldots .}} p_{{.i_{2} ...}} \left( {\frac{{p_{{i_{1} i_{2} ...}} - p_{{i_{1} ....}} p_{{.i_{2} ...}} }}{{p_{{i_{1} ....}} p_{{.i_{2} ...}} }}} \right)^{2} + \mathop \sum \limits_{{i_{1} ,i_{3} }} p_{{i_{1} ....}} p_{{..i_{3} ..}} \left( {\frac{{p_{{i_{1} .i_{3} ..}} - p_{{i_{1} ....}} p_{{..i_{3} ..}} }}{{p_{{i_{1} ....}} p_{{..i_{3} ..}} }}} \right)^{2} \\ \quad & + \mathop \sum \limits_{{i_{1} ,i_{4} }} p_{{i_{1} ....}} p_{{ \ldots i_{4} .}} \left( {\frac{{p_{{i_{1} ..i_{4} .}} - p_{{i_{1} ....}} p_{{ \ldots i_{4} .}} }}{{p_{{i_{1} ....}} p_{{ \ldots i_{4} .}} }}} \right)^{2} + \mathop \sum \limits_{{i_{1} ,i_{5} }} p_{{i_{1} ....}} p_{{ \ldots .i_{5} }} \left( {\frac{{p_{{i_{1} ...i_{5} }} - p_{{i_{1} ....}} p_{{ \ldots .i_{5} }} }}{{p_{{i_{1} ....}} p_{{ \ldots .i_{5} }} }}} \right)^{2} \\ \quad & + \mathop \sum \limits_{{i_{2} ,i_{3} }} p_{{.i_{2} ...}} p_{{..i_{3} ..}} \left( {\frac{{p_{{.i_{2} i_{3} ..}} - p_{{.i_{2} ...}} p_{{..i_{3} ..}} }}{{p_{{.i_{2} \ldots }} p_{{..i_{3} ..}} }}} \right)^{2} + \mathop \sum \limits_{{i_{2} ,i_{4} }} p_{{.i_{2} ...}} p_{{ \ldots i_{4} .}} \left( {\frac{{p_{{.i_{2} .i_{4} .}} - p_{{.i_{2} ...}} p_{{ \ldots i_{4} .}} }}{{p_{{.i_{2} ...}} p_{{ \ldots i_{4} .}} }}} \right)^{2} \\ \quad & + \mathop \sum \limits_{{i_{2} ,i_{5} }} p_{{.i_{2} ...}} p_{{....i_{5} }} \left( {\frac{{p_{{.i_{2} ..i_{5} }} - p_{{.i_{2} ...}} p_{{ \ldots .i_{5} }} }}{{p_{{.i_{2} ...}} p_{{ \ldots .i_{5} }} }}} \right)^{2} + \mathop \sum \limits_{{i_{3} ,i_{4} }} p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} \left( {\frac{{p_{{..i_{3} i_{4} .}} - p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} }}{{p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} }}} \right)^{2} \\ \quad & + \mathop \sum \limits_{{i_{3} ,i_{5} }} p_{{..i_{3} ..}} p_{{....i_{5} }} \left( {\frac{{p_{{..i_{3} .i_{5} }} - p_{{..i_{3} ..}} p_{{ \ldots .i_{5} }} }}{{p_{{..i_{3} ..}} p_{{ \ldots .i_{5} }} }}} \right)^{2} + \mathop \sum \limits_{{i_{4} ,i_{5} }} p_{{ \ldots i_{4} .}} p_{{ \ldots .i_{5} }} \left( {\frac{{p_{{ \ldots i_{4} i_{5} }} - p_{{ \ldots i_{4} .}} p_{{ \ldots .i_{5} }} }}{{p_{{ \ldots i_{4} .}} p_{{ \ldots .i_{5} }} }}} \right)^{2} \\ \quad & + \mathop \sum \limits_{{i_{1} ,i_{2} ,i_{3} }} p_{{i_{1} \ldots .}} p_{{.i_{2} \ldots }} p_{{..i_{3} ..}} \left( {\frac{{p_{{i_{1} i_{2} i_{3} ..}} - {}_{\alpha }p_{{i_{1} i_{2} i_{3} ..}} }}{{p_{1} \ldots .p_{{.i_{2} \ldots }} p_{{..i_{3} ..}} }}} \right)^{2} + \mathop \sum \limits_{{i_{1} ,i_{2} ,i_{4} }} p_{{i_{1} ....}} p_{{.i_{2} ...}} p_{{ \ldots i_{4} .}} \left( {\frac{{p_{{i_{1} i_{2} .i_{4} .}} - {}_{\alpha }p_{{i_{1} i_{2} .i_{4} .}} }}{{p_{{i_{1} ....}} p_{{.i_{2} ...}} p_{{ \ldots i_{4} .}} }}} \right)^{2} \\ \quad & + \mathop \sum \limits_{{i_{1} ,i_{2} ,i_{5} }} p_{{i_{1} ....}} p_{{.i_{2} ...}} p_{{. \ldots i_{5} }} \left( {\frac{{p_{{i_{1} i_{2} ..i_{5} }} - {}_{\alpha }p_{{i_{1} i_{2} ..i_{5} }} }}{{p_{{i_{1} \ldots .}} p_{{.i_{2} ...}} p_{{. \ldots i_{5} }} }}} \right)^{2} + \mathop \sum \limits_{{i_{1} ,i_{3} ,i_{4} }} p_{{i_{1} \ldots .}} p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} \left( {\frac{{p_{{i_{1} .i_{3} i_{4} .}} - {}_{\alpha }p_{{i_{1} .i_{3} i_{4} .}} }}{{p_{{i_{1} \ldots .}} p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} }}} \right)^{2} \\ \quad & + \mathop \sum \limits_{{i_{1} ,i_{3} ,i_{5} }} p_{{i_{1} \ldots .}} p_{{..i_{3} ..}} p_{{ \ldots .i_{5} }} \left( {\frac{{p_{{i_{1} .i_{3} .i_{5} }} - {}_{\alpha }p_{{i_{1} .i_{3} .i_{5} }} }}{{p_{{i_{1} \ldots .}} p_{{..i_{3} ..}} p_{{ \ldots .i_{5} }} }}} \right)^{2} + \mathop \sum \limits_{{i_{1} ,i_{4} ,i_{5} }} p_{{i_{1} \ldots .}} p_{{ \ldots i_{4} .}} p_{{ \ldots .i_{5} }} \left( {\frac{{p_{{i_{1} ..i_{4} i_{5} }} - {}_{\alpha }p_{{i_{1} ..i_{4} i_{5} }} }}{{p_{{i_{1} \ldots .}} p_{{ \ldots i_{4} .}} p_{{ \ldots .i_{5} }} }}} \right)^{2} \\ \quad & + \mathop \sum \limits_{{i_{2} ,i_{3} ,i_{4} }} p_{{.i_{2} ...}} p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} \left( {\frac{{p_{{.i_{2} i_{3} i_{4} .}} - {}_{\alpha }p_{{.i_{2} i_{3} i_{4} .}} }}{{p_{{.i_{2} ...}} p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} }}} \right)^{2} + \mathop \sum \limits_{{i_{2} ,i_{3} ,i_{5} }} p_{{.i_{2} ...}} p_{{..i_{3} ..}} p_{{ \ldots .i_{5} }} \left( {\frac{{p_{{.i_{2} i_{3} .i_{5} }} - {}_{\alpha }p_{{.i_{2} i_{3} .i_{5} }} }}{{p_{{.i_{2} ...}} p_{{..i_{3} ..}} p_{{ \ldots .i_{5} }} }}} \right)^{2} \\ \quad & + \mathop \sum \limits_{{i_{2} ,i_{4} ,i_{5} }} p_{{.i_{2} ...}} p_{{ \ldots i_{4} .}} p_{{ \ldots .i_{5} }} \left( {\frac{{p_{{.i_{2} .i_{4} i_{5} }} - {}_{\alpha }p_{{.i_{2} .i_{4} i_{5} }} }}{{p_{{.i_{2} ...}} p_{{...i_{4} .}} p_{{ \ldots .i_{5} }} }}} \right)^{2} + \mathop \sum \limits_{{i_{3} ,i_{4} ,i_{5} }} p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} p_{{ \ldots .i_{5} }} \left( {\frac{{p_{{..i_{3} i_{4} i_{5} }} - {}_{\alpha }p_{{..i_{3} i_{4} i_{5} }} }}{{p_{{..i_{3} ..}} p_{{...i_{4} .}} p_{{ \ldots .i_{5} }} }}} \right)^{2} \\ \quad & + \mathop \sum \limits_{{i_{1} ,i_{2} ,i_{3} ,i_{4} }} p_{{i_{1} ....}} p_{{.i_{2} ...}} p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} \left( {\frac{{p_{{i_{1} i_{2} i_{3} i_{4} .}} - {}_{\alpha }p_{{i_{1} i_{2} i_{3} i_{4} .}} }}{{p_{{i_{1} \ldots .}} p_{{.i_{2} ...}} p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} }}} \right)^{2} \\ \quad & + \mathop \sum \limits_{{i_{1} ,i_{2} ,i_{3} ,i_{5} }} p_{{i_{1} ....}} p_{{.i_{2} ...}} p_{{..i_{3} ..}} p_{{ \ldots .i_{5} }} \left( {\frac{{p_{{i_{1} i_{2} i_{3} .i_{5} }} - {}_{\alpha }p_{{i_{1} i_{2} i_{3} .i_{5} }} }}{{p_{{i_{1} \ldots .}} p_{{.i_{2} ...}} p_{{..i_{3} ..}} p_{{ \ldots ,i_{5} }} }}} \right)^{2} \\ \quad & + \mathop \sum \limits_{{i_{1} ,i_{2} ,i_{4} ,i_{5} }} p_{{i_{1} ....}} p_{{.i_{2} ...}} p_{{ \ldots i_{4} .}} p_{{ \ldots .i_{5} }} \left( {\frac{{p_{{i_{1} i_{2} .i_{4} i_{5} }} - {}_{\alpha }p_{{i_{1} i_{2} .i_{4} i_{5} }} }}{{p_{{i_{1} \ldots .}} p_{{.i_{2} ...}} p_{{...i_{4} .}} p_{{ \ldots ,i_{5} }} }}} \right)^{2} \\ \quad & + \mathop \sum \limits_{{i_{1} ,i_{3} ,i_{4} ,i_{5} }} p_{{i_{1} ....}} p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} p_{{ \ldots .i_{5} }} \left( {\frac{{p_{{i_{1} .i_{3} i_{4} i_{5} }} - {}_{\alpha }p_{{i_{1} .i_{3} i_{4} i_{5} }} }}{{p_{{i_{1} \ldots .}} p_{{..i_{3} ..}} p_{{...i_{4} .}} p_{{ \ldots ,i_{5} }} }}} \right)^{2} \\ \quad & + \mathop \sum \limits_{{i_{2} ,i_{3} ,i_{4} ,i_{5} }} p_{{.i_{2} ...}} p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} p_{{ \ldots .i_{5} }} \left( {\frac{{p_{{.i_{2} i_{3} i_{4} i_{5} }} - {}_{\alpha }p_{{.i_{2} i_{3} i_{4} i_{5} }} }}{{p_{{.i_{2} ...}} p_{{..i_{3} ..}} p_{{...i_{4} .}} p_{{ \ldots ,i_{5} }} }}} \right)^{2} \\ \quad & + \mathop \sum \limits_{{i_{1} ,i_{2} ,i_{3} ,i_{4} ,i_{5} }} p_{{i_{1} \ldots .}} p_{{.i_{2} ...}} p_{{..i_{3} ..}} p_{{ \ldots i_{4} .}} p_{{ \ldots .i_{5} }} \left( {\frac{{p_{{i_{1} i_{2} i_{3} i_{4} i_{5} }} - {}_{\alpha }p_{{i_{1} i_{2} i_{3} i_{4} i_{5} }} }}{{p_{{i_{1} \ldots .}} p_{{.i_{2} ...}} p_{{..i_{3} ..}} p_{{...i_{4} .}} p_{{ \ldots ,i_{5} }} }}} \right)^{2} . \\ \end{aligned}$$

Thus, the orthogonal partition of \(n{\Phi }^{2}={\chi }_{Total}^{2}\) for the five-way contingency table N is therefore

$$\begin{aligned} \chi_{Total}^{2} = \,& \chi_{{A_{1} A_{2} }}^{2} + \chi_{{A_{1} A_{3} }}^{2} + \chi_{{A_{1} A_{4} }}^{2} + \chi_{{A_{1} A_{5} }}^{2} + \chi_{{A_{2} A_{3} }}^{2} + \chi_{{A_{2} A_{4} }}^{2} + \chi_{{A_{2} A_{5} }}^{2} + \chi_{{A_{3} A_{4} }}^{2} + \chi_{{A_{3} A_{5} }}^{2} + \chi_{{A_{4} A_{5} }}^{2} \\ \quad & + \chi_{{A_{1} A_{2} A_{3} }}^{2} + \chi_{{A_{1} A_{2} A_{4} }}^{2} + \chi_{{A_{1} A_{2} A_{5} }}^{2} + \chi_{{A_{1} A_{3} A_{4} }}^{2} + \chi_{{A_{1} A_{3} A_{5} }}^{2} + \chi_{{A_{1} A_{4} A_{5} }}^{2} + \chi_{{A_{2} A_{3} A_{4} }}^{2} \\ \quad & + \chi_{{A_{2} A_{3} A_{5} }}^{2} + \chi_{{A_{2} A_{4} A_{5} }}^{2} + \chi_{{A_{3} A_{4} A_{5} }}^{2} + \chi_{{A_{1} A_{2} A_{3} A_{4} }}^{2} + \chi_{{A_{1} A_{2} A_{3} A_{5} }}^{2} + \chi_{{A_{1} A_{2} A_{4} A_{5} }}^{2} \\ \quad & + \chi_{{A_{1} A_{3} A_{4} A_{5} }}^{2} + \chi_{{A_{2} A_{3} A_{4} A_{5} }}^{2} + \chi_{{A_{1} A_{2} A_{3} A_{4} A_{5} }}^{2} \\ \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamalja, K.K., Khangar, N.V. & Beh, E.J. A New Algorithm for the Partition of Pearson’s Chi-Squared Statistic for Multiway Contingency Table. J Indian Soc Probab Stat 25, 121–149 (2024). https://doi.org/10.1007/s41096-023-00173-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41096-023-00173-6

Keywords

JEL Classifications

Navigation