Log in

Investigation of the dynamic behavior of sand-EPS block combination using shaking table experiments

  • Technical Note
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

Seismic isolation serves as a means to absorb vibrations, minimizing harm and structural risks arising from intense ground movements that cause significant distortions. An intriguing approach involves the incorporation of novel lightweight and nontraditional materials, such as EPS geofoam, into sandy terrains, thereby enhancing certain soil engineering properties. This investigation encompassed a series of experiments utilizing a laminar box apparatus on a shaking table. Its aim was to appraise the dynamic response of the sand-EPS geofoam amalgamation across diverse loading circumstances and strain thresholds. The study delved into the impact of varying factors, including the proportion of EPS geofoam, layering configurations, and strain intensity on the dynamic conduct of the soil-geofoam amalgam. A subsequent comparison with linear viscoelastic site response substantiated a dependable correlation. The findings divulged that escalating shear strain amplitude induced a decline in the shear modulus of the specimens, while concurrently heightening the dam** ratio. In essence, an augmentation in the volume percentage of EPS geofoam nestled between the layers of sandy soil led to a reduction in site amplification—a signifier of heightened system dam** tendencies. Furthermore, an increased stratification of EPS geofoam throughout the sandy soil repository culminated in a reduction of dam** influences. Consequently, the deposit's behavior more closely resembled that of compacted sand. Thus, a robust deduction can be drawn: for optimal dam** outcomes, EPS geofoam should be singularly layered within the sand deposit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Abbreviations

\(H,h\) :

Layer thickness (m)

\({D}_{50}\) :

The mean diameter of the particles (m)

\({D}_{10}\) :

Diameter of particles at 10% finer (m)

\(F(W)\) :

Transfer function (dimensionless)

\(\tau\) :

Shear stress (Pa)

\({\tau }_{{\text{max}}}\) :

Maximum shear stress (Pa)

\({\tau }_{{\text{min}}}\) :

Minimum shear stress (Pa)

\(u(z,t)\) :

Horizontal harmonic displacement (m)

\(\ddot{u}\left(z\right)\) :

Horizontal acceleration (m/s2)

A :

Shear displacement amplitude (mm)

\(\rho\) :

Mass density (kg/m3)

\({D}_{r}\) :

Relative density (dimensionless)

\(\upzeta\) :

Content (dimensionless)

\(t\) :

Time (s)

\({V}_{s}\) :

Shear wave velocity (m/s)

\({C}_{c}\) :

Coefficient of curvature (dimensionless)

\({C}_{u}\) :

Coefficient of uniformity (dimensionless)

\(G\) :

Shear modulus (Pa)

\({G}_{{\text{max}}}\) :

Small strain shear modulus (Pa)

\(z\) :

Layer depth (m)

\(f\) :

Frequency (Hz)

\({f}_{1}\) :

Resonance (fundamental) frequency (Hz)

\(\omega\) :

Circular frequency (rad/s)

∆W :

Net work done (J)

\({w}_{{\text{elastic}}}\) :

Elastic retrievable work (J)

\(\gamma\) :

Shear strain amplitude (dimensionless)

\({\gamma }_{{\text{max}}}\) :

Maximum shear strain (dimensionless)

\({\gamma }_{{\text{min}}}\) :

Minimum shear strain (dimensionless)

\(D\) :

Dam** ratio (dimensionless)

\(\xi\) :

Viscous dam** (dimensionless)

\({e}_{{\text{max}}}\) :

Maximum void ratio (dimensionless)

\({e}_{{\text{min}}}\) :

Minimum void ratio (dimensionless)

\({\gamma }_{{d}_{{\text{max}}}}\) :

Maximum dry unit weight (N/m3)

\({\gamma }_{{d}_{{\text{min}}}}\) :

Minimum dry unit weight (kN/m3)

\({G}_{s}\) :

Specific gravity (dimensionless)

\({k}^{*}\) :

Complex wave number (radians/m)

\(i\) :

Imaginary number (dimensionless)

References

  1. Alaie R, Jamshidi Chenari R (2018) Design and performance of a single axis shake table and laminar soil container. Civil Eng J 4(6):1326–1337

    Article  Google Scholar 

  2. ASTM D422 (2007), "Standard Test Method for Particle-Size Analysis of Soils", ASTM International, West Conshohocken, PA.

  3. ASTM D854–14, "Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer", ASTM International, West Conshohocken, PA, USA, https://doi.org/10.1520/D0854-14.

  4. Athanasopoulos, G. A., Nikolopoulou, C. & Xenaki, V. C., "Seismic isolation of earth retaining structures by EPS geofoam compressible inclusions, dynamic FE analyses", In Proceedings of the Fourth International Conference on Earthquake Geotechnical Engineering, Thessaloniki, Greece, paper 1676, 2007.

  5. Athanasopoulos GA, Pelekis PC, Xenaki VC (1999) Dynamic properties of EPS geofoam: an experimental investigation. Geosynth Int 6(3):171–194

    Article  Google Scholar 

  6. Athanasopoulos-Zekkos A, Lamote K, Athanasopoulos GA (2012) Use of EPS geofoam compressible inclusions for reducing the earthquake effects on yielding earth retaining structures. Soil Dyn Earthq Eng 41:59–71

    Article  Google Scholar 

  7. Brennan AJ, Thusyanthan NI, Madabhushi SP (2005) Evaluation of shear modulus and dam** in dynamic centrifuge tests. J Geotech Geoenviron Eng 131(12):1488–1497

    Article  Google Scholar 

  8. Chen W, Hao H, Hughes D, Shi Y, Cui J, Li ZX (2015) Static and dynamic mechanical properties of expanded polystyrene. Mater Des 69:170–180

    Article  CAS  Google Scholar 

  9. Deng A, **ao Y (2010) Measuring and modeling proportion-dependent stress-strain behavior of EPS-sand mixture. Int J Geomech 10(6):214–222

    Article  Google Scholar 

  10. Eighmy TT, Magee BJ (2001) The road to reuse. Civ Eng 71(9):66

    Google Scholar 

  11. El-Latief MAA, Ashour MB, El-Tahrany AC (2015) Strengthening of the permeability of sandy soil by different grouting materials for seepage reduction. Global J Res Eng Civ Struct Eng 15(3):39–48

    Google Scholar 

  12. Elragi, A. F., (2000)"Selected Engineering Properties and Applications of EPS Geofoam", Ph.D. dissertation, State University of New York College of Environmental Science and Forestry, New York, NY, USA

  13. Gao H, Hu Y, Wang Z, Wang C, Chen G (2017) Shaking table tests on the seismic performance of a flexible wall retaining EPS composite soil. Bull Earthq Eng 15(12):5481–5510

    Article  Google Scholar 

  14. Hakimi Basti T, Jamshidi Chenari R, Firoozfar A (2021) Linear visco-elastic 1D site response of sand-EPS geofoam layers under cyclic loading. Geosynth Int 28(1):65–79

    Google Scholar 

  15. Hakimi Basti T, Jamshidi Chenari R, Payan M, Senetakis K (2021) Monotonic, cyclic and post-cyclic shearing behavior of sand-EPS geofoam interface. Geosynth Int 28(3):259–278

    Article  Google Scholar 

  16. Hardin BO, Drnevich VP (1972) Shear modulus and dam** in soils: design equations and curves. J Soil Mech Found Div 98:667–692

    Article  Google Scholar 

  17. Inglis, D., Macleod, G., Naesgaard, E. & Zergoun, M., (1996)"Basement wall with seismic earth pressures and novel expanded polystyrene foam buffer layer", In Proceedings of the 10th Annual Symposium of the Vancouver Geotechnical Society, Vancouver, BC. Vancouver Geotechnical Society, Vancouver, BC, Canada

  18. Inyang HI (2003) Framework for recycling of wastes in construction. J Environ Eng 129(10):887–898

    Article  CAS  Google Scholar 

  19. Jamshidi Chenari R, Towhata I, Ghiassian H, Tabarsa AR (2010) Experimental evaluation of dynamic deformation characteristics of sheet pile retaining walls with fiber reinforced backfill. Soil Dyn Earthq Eng 30(6):438–446

    Article  Google Scholar 

  20. Jamshidi Chenari R, Firoozfar A, Attari S, Izadi A, Shafiei SE (2017) Deformation characteristics of sand geofoam blocks using large-scale oedometer apparatus. Civil Eng J 3(8):585–593

    Article  Google Scholar 

  21. Jamshidi Chenari R, Nasiri A (2019) Site-Response Analysis of Geotextile-Reinforced Toyoura Sand. Int J Geosynth Ground Eng 5(2):1–17

    Article  Google Scholar 

  22. Kramer, S. L., (1996)"Geotechnical Earthquake Engineering", Prentice Hall, Upper Saddle River, NJ, USA, pp. 653

  23. Nayak CB, Thakare SB (2019) Seismic performance of existing water tank after condition ranking using non-destructive testing. Int J Adv Struct Eng 11(4):395–410

    Article  CAS  Google Scholar 

  24. Nayak CB (2021) A state-of-the-art review of vertical ground motion (VGM) characteristics, effects and provisions. Innov Infrastruct Solut 6(2):124

    Article  Google Scholar 

  25. Ossa A, Romo MP (2011) Dynamic characterization of EPS geofoam. Geotext Geomembr 29(1):40–50

    Article  Google Scholar 

  26. Pelekis, P. C., Xenaki, V. C. & Athanasopoulos, G. A., "Use of EPS geofoam for seismic isolation of earth retaining structures: results of a FEM study", In Proceedings of the 2nd European Geosynthetics Conference, Bologna, Italy, Cancell, A. Editor, Italian Geotechnical Society (AGI), Bologna, Italy, 15–18, 2000.

  27. Seed, H. B. & Idriss, I. M., "Soil Moduli and Dam** Factors for Dynamic Analysis", Report No. EERC 70–10, University of California, Berkeley, CA, USA, 1970.

  28. Trandafir AC, Bartlett SF, Lingwall BN (2010) Behavior of EPS geofoam in stress-controlled cyclic uniaxial tests. Geotext Geomembr 28(6):514–524

    Article  Google Scholar 

  29. Trandafir, A. C., Erickson, B. A., Moyles, J. F. & Bartlett, S. F., "Confining stress effects on the stress-strain response of EPS geofoam in cyclic triaxial tests", In Geo-Frontiers 2011: Advances in Geotechnical Engineering, Jie, H. & Daniel, E. A. Editors. ASCE, Dallas, TX, USA, 2084–2091, 2011.

  30. **e M, Zheng J, Shao A, Miao C, Zhang J (2020) Study of lateral earth pressures on nonyielding retaining walls with deformable geofoam inclusions. Geotext Geomembr 48(5):684–690

    Article  Google Scholar 

  31. Zarnani S, Bathurst RJ (2007) Experimental investigation of EPS geofoam seismic buffers using shaking table tests. Geosynth Int 14(3):165–177

    Article  Google Scholar 

  32. Zeghal M, Elgamal AW, Tang HT, Stepp JC (1995) Lotung downhole array. II: Evaluation of soil nonlinear properties. J Geotech Eng 121(4):363–378

    Article  Google Scholar 

  33. Zhu, W., Li, M., Zhang, C. & Zhao, G., (2008). Density and strength properties of sand-expanded polystyrene beads mixture. In GeoCongress 2008: Characterization, Monitoring, and Modeling of GeoSystems, pp.36–43

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Firoozfar.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakimi, T., Firoozfar, A. & Jamshidi Chenari, R. Investigation of the dynamic behavior of sand-EPS block combination using shaking table experiments. Innov. Infrastruct. Solut. 9, 143 (2024). https://doi.org/10.1007/s41062-024-01454-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-024-01454-0

Keywords

Navigation