Log in

A review of application of UHPFRC in bridges as an overlay

  • Review
  • Published:
Innovative Infrastructure Solutions Aims and scope Submit manuscript

Abstract

A quick increase in the traffic loads (repetitive) and aging deteriorates the bridge's life. To increase the life of the bridge, techniques like overlaying are developed & implemented. Concrete with higher compressive strength and appreciable interfacial bond, which can enhance the life of the deck slab, is used as an overlaying material. In this process, researchers developed a ground-breaking next-generation concrete named “Ultra-High-Performance Fiber Reinforced Concrete (UHPFRC).” UHPFRC gives a minimum 120 MPa compressive strength and 7 Mpa tensile strength, respectively, which is much higher than conventional concrete. The novelty of this paper is to highlight the constituents and exceptional properties of UHPFRC, like compressive strength, fatigue life, and interfacial bond with the already existing substrate, making out suitable material for overlaying. Further, the use of UHPFRC as an overlay in various structural elements has been studied. The applications of UHPFRC around the world for rehabilitation purposes are also highlighted by discussing various case studies that should be added.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Jeswani B, Budhlani D (2020) A review paper on analysis and design of bridge components using Staad Pro. Int Res J Eng Technol 7:4707–4709

    Google Scholar 

  2. Anthosh AS, Anikandan MM (2016) A review on fatigue analysis of steel Truss Bridge, 05: 990–994.

  3. Ma CH, Deng P, Matsumoto T (2021) Fatigue analysis of a UHPFRC-OSD composite structure considering crack bridging and interfacial bond stiffness degradations. Eng Struct 249:113330. https://doi.org/10.1016/j.engstruct.2021.113330

    Article  Google Scholar 

  4. Pillai AJ, Talukdar S (2021) Fatigue life estimation of continuous girder bridges based on the sequence of loading. Struct Infrastruct Eng 17:990–1006. https://doi.org/10.1080/15732479.2020.1784962

    Article  Google Scholar 

  5. Thermou GE, Pantazopoulou SJ, Elnashai AS (2007) Flexural behavior of brittle RC members rehabilitated with concrete jacketing. J Struct Eng 133:1373–1384. https://doi.org/10.1061/(asce)0733-9445(2007)133:10(1373)

    Article  Google Scholar 

  6. Cook JP, Asce F (1984) Steel plates for torsion repair, 110: 10–18.

  7. Wu ZJ, Davies JM (2003) Mechanical analysis of a cracked beam reinforced with an external FRP plate. Compos Struct 62:139–143. https://doi.org/10.1016/S0263-8223(03)00108-9

    Article  Google Scholar 

  8. Harajli MH (1993) Strengthening of concrete beams by external prestressing. PCI J 38:76–88

    Article  Google Scholar 

  9. Triantafillou TC, Plevris N (1992) Strengthening of RC beams with epoxy-bonded fibre-composite materials. Mater Struct 25:201–211. https://doi.org/10.1007/BF02473064

    Article  Google Scholar 

  10. Tanarslan HM (2017) Flexural strengthening of RC beams with prefabricated ultra high performance fibre reinforced concrete laminates. Eng Struct 151:337–348. https://doi.org/10.1016/j.engstruct.2017.08.048

    Article  Google Scholar 

  11. Zhou Z, Qiao P (2019) Tensile behavior of ultra-high performance concrete: analytical model and experimental validation. Constr Build Mater 201:842–851. https://doi.org/10.1016/j.conbuildmat.2018.12.137

    Article  Google Scholar 

  12. Cruz JS, Barros J (2004) Modeling of bond between near-surface mounted CFRP laminate strips and concrete. Comput Struct 82:1513–1521. https://doi.org/10.1016/j.compstruc.2004.03.047

    Article  Google Scholar 

  13. Harajli MH, Soudki KA, Kudsi T (2006) Strengthening of interior slab-column connections using a combination of FRP sheets and steel bolts. J Compos Constr 10:399–409. https://doi.org/10.1061/(asce)1090-0268(2006)10:5(399)

    Article  Google Scholar 

  14. CNR-DT 200 R1 / 2012 (2015) Guide for the design and construction of externally guide for the design and construction of externally bonded frp systems for strengthening existing structures Materials , RC and PC structures , masonry structures

  15. Xue J, Briseghella B, Huang F, Nuti C, Tabatabai H, Chen B (2020) Review of ultra-high performance concrete and its application in bridge engineering. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.119844

    Article  Google Scholar 

  16. Bae Y, Pyo S (2020) Ultra high performance concrete (UHPC) sleeper: Structural design and performance. Eng Struct 210:110374. https://doi.org/10.1016/j.engstruct.2020.110374

    Article  Google Scholar 

  17. Haber ZB, Munoz JF, Graybeal BA, Field testing of an ultra-high performance concrete overlay, office of infrastructure research & development federal highway administration. (2017) 57. https://www.fhwa.dot.gov/publications/research/infrastructure/structures/bridge/17096/index.cfm.

  18. Richard P, Cheyrezy M (1995) Composition of reactive powder concretes. Cem Concr Res 25:1501–1511. https://doi.org/10.1016/0008-8846(95)00144-2

    Article  Google Scholar 

  19. Torregrosa EC, Dosage optimization and bolted connections for UHPFRC ties, 2013. https://riunet.upv.es/bitstream/handle/10251/34790/Camacho - Dosage optimization and bolted connections for UHPFRC ties.pdf?sequence=1%0Ahttps://www.educacion.gob.es/teseo/imprimirFicheroTesis.do?idFichero=XLNMe%2F13E9w%3D.

  20. Kim H, Koh T, Pyo S (2016) Enhancing flowability and sustainability of ultra high performance concrete incorporating high replacement levels of industrial slags. Constr Build Mater 123:153–160. https://doi.org/10.1016/j.conbuildmat.2016.06.134

    Article  Google Scholar 

  21. Blais PY, Couture M (1999) Precast, Prestressed Pedestrian Bridge — World ’ s first reactive. PCI J 44:60–71

    Article  Google Scholar 

  22. Bian C, Wang JY (2019) Mechanical and damage mechanisms of reinforced ultra high performance concrete under tensile loading. Constr Build Mater 226:259–279. https://doi.org/10.1016/j.conbuildmat.2019.07.162

    Article  Google Scholar 

  23. Azmee NM, Shafiq N (2018) Ultra-high performance concrete: From fundamental to applications. Case Stud Construc Mater. https://doi.org/10.1016/j.cscm.2018.e00197

    Article  Google Scholar 

  24. Pyo S, El-Tawil S (2015) Capturing the strain hardening and softening responses of cementitious composites subjected to impact loading. Constr Build Mater 81:276–283. https://doi.org/10.1016/j.conbuildmat.2015.02.028

    Article  Google Scholar 

  25. Pyo S, Alkaysi M, El-Tawil S (2016) Crack propagation speed in ultra high performance concrete (UHPC). Constr Build Mater 114:109–118. https://doi.org/10.1016/j.conbuildmat.2016.03.148

    Article  Google Scholar 

  26. Kim JS, Kwark J, Joh C, Yoo SW, Lee KC (2015) Headed stud shear connector for thin ultrahigh-performance concrete bridge deck. J Constr Steel Res 108:23–30. https://doi.org/10.1016/j.jcsr.2015.02.001

    Article  Google Scholar 

  27. Zhou M, Lu W, Song J, Lee GC (2018) Application of ultra-high performance concrete in bridge engineering. Constr Build Mater 186:1256–1267. https://doi.org/10.1016/j.conbuildmat.2018.08.036

    Article  Google Scholar 

  28. Groeneveld AB, Ahlborn TM, Crane CK, Burchfield CA, Landis EN (2018) Dynamic strength and ductility of ultra-high performance concrete with flow-induced fiber alignment. Int J Impact Eng 111:37–45. https://doi.org/10.1016/j.ijimpeng.2017.08.009

    Article  Google Scholar 

  29. Li PP, Brouwers HJH, Yu Q (2020) Influence of key design parameters of ultra-high performance fibre reinforced concrete on in-service bullet resistance. Int J Impact Eng. https://doi.org/10.1016/j.ijimpeng.2019.103434

    Article  Google Scholar 

  30. Tayeh BA, Abu Bakar BH, Megat Johari MA, Voo YL (2013) Utilization of ultra-high performance fibre concrete (UHPFC) for rehabilitation a review. Procedia Eng 54:525–538. https://doi.org/10.1016/j.proeng.2013.03.048

    Article  Google Scholar 

  31. de Larrard F, Sedran T (1994) Optimization of ultra-high-performance concrete by the use of a packing model. Cem Concr Res 24:997–1009. https://doi.org/10.1016/0008-8846(94)90022-1

    Article  Google Scholar 

  32. Sorelli L, Constantinides G, Ulm FJ, Toutlemonde F (2008) The nano-mechanical signature of ultra high performance concrete by statistical nanoindentation techniques. Cem Concr Res 38:1447–1456. https://doi.org/10.1016/j.cemconres.2008.09.002

    Article  Google Scholar 

  33. Rossi P, Arca A, Parant E, Fakhri P (2005) Bending and compressive behaviours of a new cement composite. Cem Concr Res 35:27–33. https://doi.org/10.1016/j.cemconres.2004.05.043

    Article  Google Scholar 

  34. Lee NK, Koh KT, Park SH, Ryu GS (2017) Microstructural investigation of calcium aluminate cement-based ultra-high performance concrete (UHPC) exposed to high temperatures. Cem Concr Res 102:109–118. https://doi.org/10.1016/j.cemconres.2017.09.004

    Article  Google Scholar 

  35. Brühwiler E (2020) UHPFRC technology to enhance the performance of existing concrete bridges. Struct Infrastruct Eng 16:94–105. https://doi.org/10.1080/15732479.2019.1605395

    Article  Google Scholar 

  36. Wu Z, Shi C, He W, Wu L (2016) Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete. Constr Build Mater 103:8–14. https://doi.org/10.1016/j.conbuildmat.2015.11.028

    Article  Google Scholar 

  37. Aziz OQ, Ahmed GH (2012) Mechanical properties of Ultra High Performance Concrete (UHPC) American Concrete Institute. ACI Special Publication https://doi.org/10.14359/51684273

  38. Voo YL, Foster SJ, Voo CC (2015) Ultrahigh-performance concrete segmental bridge technology: toward sustainable bridge construction. J Bridge Eng. https://doi.org/10.1061/(asce)be.1943-5592.0000704

    Article  Google Scholar 

  39. Birchall JD, Howard AJ, Kendall K (1981) Flexural strength and porosity of cements. Nature 289:388–390. https://doi.org/10.1038/289388a0

    Article  Google Scholar 

  40. Bache HH, Densified cements ultra-fine particle-based materials, In: Proceedings of the 2nd International Conference on Super Plasticizers in Concrete, Ottawa, 1981: pp. 185–213.

  41. Gholampour A, Sciences M (2019) Development of eco-friendly and high performance construction materials and technologies

  42. Graybeal B (2006) Material property characterization of ultra-high performance concrete, Fhwa. 186.

  43. Shi C, Wu Z, **ao J, Wang D, Huang Z, Fang Z (2015) A review on ultra high performance concrete: Part I. Raw Mater Mixture Design, Construc Build Mater 101:741–751. https://doi.org/10.1016/j.conbuildmat.2015.10.088

    Article  Google Scholar 

  44. Buck JJ, McDowell DL, Zhou M (2013) Effect of microstructure on load-carrying and energy-dissipation capacities of UHPC. Cem Concr Res 43:34–50. https://doi.org/10.1016/j.cemconres.2012.10.006

    Article  Google Scholar 

  45. Schmidt M, Fehling E (2005) Ultra-high-performance concrete: Research, development and application in Europe, American Concrete Institute, ACI Special Publication. SP-228 51–77.

  46. Paul B, Acker M (2004) DUCTAL® TECHNOLOGY: A LARGE SPECTRUM OF PROPERTIES, A WIDE RANGE OF APPLICATIONS, in: Ultra-High Performance Concrete, Kassel, Germany, pp. 11–23.

  47. Zdeb T (2013) Ultra-high performance concrete-properties and technology. Bull Polish Acad Sci: Tech Sci 61:183–193. https://doi.org/10.2478/bpasts-2013-0017

    Article  Google Scholar 

  48. Abbas S, Soliman AM, Nehdi ML (2015) Exploring mechanical and durability properties of ultra-high performance concrete incorporating various steel fiber lengths and dosages. Constr Build Mater 75:429–441. https://doi.org/10.1016/j.conbuildmat.2014.11.017

    Article  Google Scholar 

  49. Van Tuan N, Ye G, Van Breugel K, Fraaij ALA, Bui DD (2011) The study of using rice husk ash to produce ultra high performance concrete. Constr Build Mater 25:2030–2035. https://doi.org/10.1016/j.conbuildmat.2010.11.046

    Article  Google Scholar 

  50. Yang SL, Millard SG, Soutsos MN, Barnett SJ, Le TT (2009) Influence of aggregate and curing regime on the mechanical properties of ultra-high performance fibre reinforced concrete (UHPFRC). Constr Build Mater 23:2291–2298. https://doi.org/10.1016/j.conbuildmat.2008.11.012

    Article  Google Scholar 

  51. Hassan AMT, Jones SW, Mahmud GH (2012) Experimental test methods to determine the uniaxial tensile and compressive behaviour of Ultra High Performance Fibre Reinforced Concrete(UHPFRC). Constr Build Mater 37:874–882. https://doi.org/10.1016/j.conbuildmat.2012.04.030

    Article  Google Scholar 

  52. Park SH, Kim DJ, Ryu GS, Koh KT (2012) Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cement Concr Compos 34:172–184. https://doi.org/10.1016/j.cemconcomp.2011.09.009

    Article  Google Scholar 

  53. Rossi P (2013) Influence of fibre geometry and matrix maturity on the mechanical performance of ultra high-performance cement-based composites. Cement Concr Compos 37:246–248. https://doi.org/10.1016/j.cemconcomp.2012.08.005

    Article  Google Scholar 

  54. Wang W, Liu J, Agostini F, Davy CA, Skoczylas F, Corvez D (2014) Durability of an ultra high performance fiber reinforced concrete (UHPFRC) under progressive aging. Cem Concr Res 55:1–13. https://doi.org/10.1016/j.cemconres.2013.09.008

    Article  Google Scholar 

  55. Yu R, Spiesz P, Brouwers HJH (2014) Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). Cem Concr Res 56:29–39. https://doi.org/10.1016/j.cemconres.2013.11.002

    Article  Google Scholar 

  56. Yu R, Spiesz P, Brouwers HJH (2015) Development of an eco-friendly Ultra-High Performance Concrete (UHPC) with efficient cement and mineral admixtures uses. Cement Concr Compos 55:383–394. https://doi.org/10.1016/j.cemconcomp.2014.09.024

    Article  Google Scholar 

  57. Resplendino J, Toutlemonde F (2013) The UHPFRC revolution in structural design and construction, in: RILEM-Fib-AFGC Int Symposium on Ultra-High Performance Fibre-Reinforced Concrete,UHPFRC 2013, pp. 791–804.

  58. Graybeal BA, Russel HG (2013) Ultra-high performance concrete: a state-of-the-art report for the bridge community. Publication N.o FHWA-HRT-13–060, 176.

  59. Cavill CB, Gordon J (2004) The world’s first RPC road bridge at Shepherds Gully Creek, NSW.

  60. Brühwiler E, Denarié E (2013) Rehabilitation and strengthening of concrete structures using ultra-high performance fibre reinforced concrete. Struct Eng Int: J Int Assoc Bridge and Struct Eng (IABSE) 23:450–457. https://doi.org/10.2749/101686613X13627347100437

    Article  Google Scholar 

  61. S. Grunewald, H. Kohne, M. Nio, M. Serafini, A. Verdonk, R. van Nalta, R. Huijben, V. Mechtcherine, L. Dudziak, L. Gielbert, Parkbridge: Optimization of a slender bridge in UHPFRC, in: Proceedings of International Symposium on Ultra-High Performance Fiber-Reinforced Concrete Marseille, France, 2013: pp. 379–388.

  62. Tirimanna JFD (2013) Title : FDN SUSTAINABLE UHPFRC BRIDGES, in: Proceedings of International Symposium on Ultra-High Performance Fiber-Reinforced Concrete, pp. 395–404.

  63. Naaman AE (2018) Fiber reinforced concrete: five decades of progress, 35–56. https://doi.org/10.21452/bccm4.2018.02.01.

  64. Tadros MK, Voo YL (2016) Taking ultra-high-performance concrete to new heights: the Malaysian experience. Aspire Concrete Bridge Magaz 10:36–38

    Google Scholar 

  65. Brühwiler E, Bastien-Masse M, Mühlberg H, Houriet B, Fleury B, Cuennet S, Schär P, Boudry F, Maurer M (2015) Strengthening the Chillon viaducts deck slabs with reinforced UHPFRC, IABSE Conference, Geneva 2015: Structural Engineering: Providing Solutions to Global Challenges - Report. 1171–1178. https://doi.org/10.2749/222137815818358457.

  66. Researchers of dura, DURA - Ultra-High Performance Fiber Reinforced Concrete, (2019) 1–8.

  67. Resplendino J, Toutlemonde F (2014) The UHPFRC revolution in structural design and construction. Indian Concrete Journal 88:72–83

    Google Scholar 

  68. Denarié E, Habel K, Brühwiler E (2003) Structural behavior of hybrid elements with Advanced Cementitious Materials (HPFRCC), 4th International Workshop on High Performance Fiber Reinforced Cement Composites. 12.

  69. Brühwiler E, Denarié E (2013) Rehabilitation of concrete structures using ultra-high performance fibre reinforced concrete. Struct Eng Int: J Int Assoc Bridge and Struct Eng (IABSE) 23:450–457. https://doi.org/10.2749/101686613X13627347100437

    Article  Google Scholar 

  70. Bahedh MA, Jaafar MS (2018) Ultra high-performance concrete utilizing fly ash as cement replacement under autoclaving technique. Case Stud Construct Mater. 9:e00202

    Article  Google Scholar 

  71. Roussel N (2006) A thixotropy model for fresh fluid concretes: Theory, validation and applications. Cem Concr Res 36:1797–1806. https://doi.org/10.1016/j.cemconres.2006.05.025

    Article  Google Scholar 

  72. Khayat KH, Meng W, Vallurupalli K, Teng L (2019) Rheological properties of ultra-high-performance concrete—An overview. Cement and Concrete Res. 124:105828

    Article  Google Scholar 

  73. Nanthagopalan P, Haist M, Santhanam M, Müller HS (2008) Investigation on the influence of granular packing on the flow properties of cementitious suspensions. Cement Concr Compos 30:763–768. https://doi.org/10.1016/j.cemconcomp.2008.06.005

    Article  Google Scholar 

  74. Vikan H, Justnes H, Winnefeld F, Figi R (2007) Correlating cement characteristics with rheology of paste. Cem Concr Res 37:1502–1511. https://doi.org/10.1016/j.cemconres.2007.08.011

    Article  Google Scholar 

  75. Chen JJ, Kwan AKH (2012) Superfine cement for improving packing density, rheology and strength of cement paste. Cement Concr Compos 34:1–10. https://doi.org/10.1016/j.cemconcomp.2011.09.006

    Article  Google Scholar 

  76. Kovler K, Roussel N (2011) Properties of fresh and hardened concrete. Cem Concr Res 41:775–792. https://doi.org/10.1016/j.cemconres.2011.03.009

    Article  Google Scholar 

  77. Mikanovic N, Jolicoeur C (2008) Influence of superplasticizers on the rheology and stability of limestone and cement pastes. Cem Concr Res 38:907–919. https://doi.org/10.1016/j.cemconres.2008.01.015

    Article  Google Scholar 

  78. Jiao D, Shi C, Yuan Q, An X, Liu Y, Li H (2017) Effect of constituents on rheological properties of fresh concrete-A review. Cement Concr Compos 83:146–159. https://doi.org/10.1016/j.cemconcomp.2017.07.016

    Article  Google Scholar 

  79. Laskar SM, Talukdar S (2017) Preparation and tests for workability, compressive and bond strength of ultra-fine slag based geopolymer as concrete repairing agent. Constr Build Mater 154:176–190. https://doi.org/10.1016/j.conbuildmat.2017.07.187

    Article  Google Scholar 

  80. Westerholm M, Lagerblad B, Silfwerbrand J, Forssberg E (2008) Influence of fine aggregate characteristics on the rheological properties of mortars. Cement Concr Compos 30:274–282. https://doi.org/10.1016/j.cemconcomp.2007.08.008

    Article  Google Scholar 

  81. Bager D, Geiker M, Jensen R (2001) Rheology of self-compacting mortars-influence of particle grading, Nordic Concr Res 26.

  82. Peyvandi A, Sbia LA, Soroushian P, Sobolev K (2013) Effect of the cementitious paste density on the performance efficiency of carbon nanofiber in concrete nanocomposite. Constr Build Mater 48:265–269. https://doi.org/10.1016/j.conbuildmat.2013.06.094

    Article  Google Scholar 

  83. Li P, Yu Q, Brouwers HJ, Yu R (2016) Fresh behaviour of ultra-high performance concrete (UHPC): an investigation of the effect of superplasticizers and steel fibres, 9th International Concrete Conference 2016, Environment, Efficiency and Economic Challenges for Concrete. 635–644

  84. Yildizel SA, Timur O, Ozturk AU (2018) Abrasion resistance and mechanical properties of waste-glass-fiber-reinforced roller-compacted concrete. Mech Compos Mater 54:251–256. https://doi.org/10.1007/s11029-018-9736-6

    Article  Google Scholar 

  85. Poinot T, Bartholin MC, Govin A, Grosseau P (2015) Influence of the polysaccharide addition method on the properties of fresh mortars. Cem Concr Res 70:50–59. https://doi.org/10.1016/j.cemconres.2015.01.004

    Article  Google Scholar 

  86. Yuan F, Chen M, Pan J (2020) Flexural strengthening of reinforced concrete beams with high-strength steel wire and engineered cementitious composites. Construc. Build Mater 254:119284. https://doi.org/10.1016/j.conbuildmat.2020.119284

    Article  Google Scholar 

  87. Bouras R, Kaci A, Chaouche M (2012) Influence of viscosity modifying admixtures on the rheological behavior of cement and mortar pastes. Korea Aus Rheol J 24:35–44. https://doi.org/10.1007/s13367-012-0004-3

    Article  Google Scholar 

  88. Yahia A, Khayat KH (2001) Experiment design to evaluate interaction of high-range water-reducer and antiwashout admixture in high-performance cement grout. Cem Concr Res 31:749–757. https://doi.org/10.1016/S0008-8846(01)00496-3

    Article  Google Scholar 

  89. Sonebi M (2006) Rheological properties of grouts with viscosity modifying agents as diutan gum and welan gum incorporating pulverised fly ash. Cem Concr Res 36:1609–1618. https://doi.org/10.1016/j.cemconres.2006.05.016

    Article  Google Scholar 

  90. Zhang Y, Chai YH (2021) Numerical analysis of bridge deck rehabilitation by ultra-high-performance concrete (UHPC) overlay. Structures 33:4791–4802. https://doi.org/10.1016/j.istruc.2021.07.044

    Article  Google Scholar 

  91. Luo S (2002) Evaluations of concrete overlays for bridge deck applications.

  92. JSCE (2004) Recommendations for design and construction of ultra-high strength fiber reinforced concrete structures (Draft). Tokyo, Japan.

  93. Graybeal BA (2008) Flexural behavior of an ultrahigh-performance concrete I-girder. J Bridg Eng 13:602–610. https://doi.org/10.1061/(asce)1084-0702(2008)13:6(602)

    Article  Google Scholar 

  94. Yoo DY, Kim J, Zi G, Yoon YS (2015) Effect of shrinkage-reducing admixture on biaxial flexural behavior of ultra-high-performance fiber-reinforced concrete. Constr Build Mater 89:67–75. https://doi.org/10.1016/j.conbuildmat.2015.04.040

    Article  Google Scholar 

  95. Yoo DY, Kim JJ, Chun B (2019) Dynamic pullout behavior of half-hooked and twisted steel fibers in ultra-high-performance concrete containing expansive agents. Compos B Eng 167:517–532. https://doi.org/10.1016/j.compositesb.2019.03.022

    Article  Google Scholar 

  96. Qi J, Wu Z, Ma ZJ, Wang J (2018) Pullout behavior of straight and hooked-end steel fibers in UHPC matrix with various embedded angles. Constr Build Mater 191:764–774. https://doi.org/10.1016/j.conbuildmat.2018.10.067

    Article  Google Scholar 

  97. Yoo DY, Park JJ, Kim SW (2017) Fiber pullout behavior of HPFRCC: Effects of matrix strength and fiber type. Compos Struct 174:263–276. https://doi.org/10.1016/j.compstruct.2017.04.064

    Article  Google Scholar 

  98. Xu M, Hallinan B, Wille K (2016) Effect of loading rates on pullout behavior of high strength steel fibers embedded in ultra-high performance concrete. Cement Concr Compos 70:98–109. https://doi.org/10.1016/j.cemconcomp.2016.03.014

    Article  Google Scholar 

  99. Wille K, El-tawil S, Naaman AE (2014) Properties of strain hardening ultra high performance fiber reinforced concrete ( UHP-FRC ) under direct tensile loading. CEMENT AND CONCRETE COMPOSITES 48:53–66. https://doi.org/10.1016/j.cemconcomp.2013.12.015

    Article  Google Scholar 

  100. Yoo DY, Kang ST, Yoon YS (2014) Effect of fiber length and placement method on flexural behavior, tension-softening curve, and fiber distribution characteristics of UHPFRC. Constr Build Mater 64:67–81. https://doi.org/10.1016/j.conbuildmat.2014.04.007

    Article  Google Scholar 

  101. Wille K, Naaman AE, El-Tawil S, Parra-Montesinos GJ (2012) Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing. Mater Struct/Materiaux et Construc 45:309–324. https://doi.org/10.1617/s11527-011-9767-0

    Article  Google Scholar 

  102. Kang ST, Lee Y, Park YD, Kim JK (2010) Tensile fracture properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with steel fiber. Compos Struct 92:61–71. https://doi.org/10.1016/j.compstruct.2009.06.012

    Article  Google Scholar 

  103. Talebinejad I, Bassam SA, Iranmanesh A, Shekarchizadeh M (2004) Optimizing mix proportions of normal weight reactive powder concrete with strengths of 200–350 MPa, International Symposium on Ultra High Performance Concrete. 133–141.

  104. Wille K, Naaman A, Parra-Montesinos G (2011) Ultra-high performance concrete with compressive strength exceeding 150 MPa (22 ksi): a simpler way. ACI Mater J 108:46–54

    Google Scholar 

  105. Strunge T, & Deuse T (2008) Special cements for ultra high performance concrete, in: In Proceedings of the Second International Symposium on Ultra High Performance Concrete, Kassel, Germany, pp. 61–68.

  106. Rougeau B, Burys P (2004) Ultra-high performance concrete with ultrafine particles other than silica fume., in: In Proceedings of the International Symposium on UHPC, Kassel, pp. 313–325.

  107. Tue JN, Orgass M, Ma (2008) Influence of addition method of superplasticizer on the properties of fresh UHPC, in: In Proceedings of the 2nd International Symposium on Ultra-High Performance Concrete, Kassel, Germany, pp. 93–100.

  108. Le Hoang A, Fehling E, Thai DK, Van Nguyen C (2019) Evaluation of axial strength in circular STCC columns using UHPC and UHPFRC. J Constr Steel Res 153:533–549. https://doi.org/10.1016/j.jcsr.2018.11.001

    Article  Google Scholar 

  109. Phares B, Krapfl M (2005) Ultra high performance concrete. Mater Technol 20:174

    Google Scholar 

  110. Brühwiler E (2016) Structural UHPFRC “Structural UHPFRC” : Welcome to the post-concrete era !, First International Interactive Symposium on UHPC, 1–16.

  111. Moore P, Vonk E, Nagtegaal G (2012) Orthotropic deck fatigue Renovation of 8 bridges in the Netherlands. Bridge and Concrete Research in Ireland https://doi.org/10.13140/RG.2.1.1571.1200.

  112. Walter R, Olesen JF, Stang H, Vejrum T (2007) Analysis of an orthotropic deck stiffened with a cement-based overlay. J Bridg Eng 12:350–363. https://doi.org/10.1061/(asce)1084-0702(2007)12:3(350)

    Article  Google Scholar 

  113. Lee MK, Barr BIG (2004) An overview of the fatigue behaviour of plain and fibre reinforced concrete. Cement Concr Compos 26:299–305. https://doi.org/10.1016/S0958-9465(02)00139-7

    Article  Google Scholar 

  114. Sadananda K, Vasudevan AK, Phan N (2007) Analysis of endurance limits under very high cycle fatigue using a unified damage approach. Int J Fatigue 29:2060–2071. https://doi.org/10.1016/j.ijfatigue.2007.02.028

    Article  Google Scholar 

  115. Shafieifar M, Farzad M, Azizinamini A (2018) A comparison of existing analytical methods to predict the flexural capacity of Ultra High Performance Concrete (UHPC) beams. Constr Build Mater 172:10–18. https://doi.org/10.1016/j.conbuildmat.2018.03.229

    Article  Google Scholar 

  116. Al-Osta MA, Isa MN, Baluch MH, Rahman MK (2017) Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete. Constr Build Mater 134:279–296. https://doi.org/10.1016/j.conbuildmat.2016.12.094

    Article  Google Scholar 

  117. Zhang S, Shao X, Cao J, Cui J, Hu J, Deng L (2016) Fatigue performance of a lightweight composite bridge deck with open ribs. J Bridg Eng 21:04016039. https://doi.org/10.1061/(asce)be.1943-5592.0000905

    Article  Google Scholar 

  118. Dieng L, Marchand P, Gomes F, Tessier C, Toutlemonde F (2013) Use of UHPFRC overlay to reduce stresses in orthotropic steel decks. J Constr Steel Res 89:30–41. https://doi.org/10.1016/j.jcsr.2013.06.006

    Article  Google Scholar 

  119. Zhang Q, Liu Y, Bao Y, Jia D, Bu Y, Li Q (2017) Fatigue performance of orthotropic steel-concrete composite deck with large-size longitudinal U-shaped ribs. Eng Struct 150:864–874. https://doi.org/10.1016/j.engstruct.2017.07.094

    Article  Google Scholar 

  120. Kakuma K, Matsumoto T, Hayashikawa T, He X (2011) Fatigue analysis of ECC-Steel composite deck under wheel trucking load. Procedia Eng 14:1838–1844. https://doi.org/10.1016/j.proeng.2011.07.231

    Article  Google Scholar 

  121. Liu Y, Zhang Q, Meng W, Bao Y, Bu Y (2019) Transverse fatigue behaviour of steel-UHPC composite deck with large-size. Eng Struct 180:388–399. https://doi.org/10.1016/j.engstruct.2018.11.057

    Article  Google Scholar 

  122. Ramachandra Murthy A, Karihaloo BL, Vindhya Rani P, Shanmuga Priya D (2018) Fatigue behaviour of damaged RC beams strengthened with ultra high performance fibre reinforced concrete. Int J Fatigue 116:659–668. https://doi.org/10.1016/j.ijfatigue.2018.06.046

    Article  Google Scholar 

  123. Zhu Y, Zhang Y, Hussein HH, Qiu M, Meng D, Chen G (2021) Flexural strengthening of large-scale damaged reinforced concrete bridge slab using UHPC layer with different interface techniques. Struct Infrastruct Eng. https://doi.org/10.1080/15732479.2021.1876104

    Article  Google Scholar 

  124. Tayeh BA, Abu Bakar BH, Megat Johari MA, Voo YL (2013) Evaluation of bond strength between normal concrete substrate and ultra high performance fiber concrete as a repair material. Procedia Eng 54:554–563. https://doi.org/10.1016/j.proeng.2013.03.050

    Article  Google Scholar 

  125. Deng L, Zou S, Wang W, Kong X (2021) Fatigue performance evaluation for composite OSD using UHPC under dynamic vehicle loading. Eng Struct 232:1–11. https://doi.org/10.1016/j.engstruct.2020.111831

    Article  Google Scholar 

  126. Ricker M, Häusler F, Randl N (2017) Punching strength of flat plates reinforced with UHPC and double-headed studs. Eng Struct 136:345–354. https://doi.org/10.1016/j.engstruct.2017.01.018

    Article  Google Scholar 

  127. Huang Y, Chen S, Gu P (2021) Static and fatigue behavior of shear stud connection embedded in UHPC. Structures 34:2777–2788. https://doi.org/10.1016/j.istruc.2021.09.043

    Article  Google Scholar 

  128. Sprinkel MM, Ozyildirim C (2000) EVALUATION OF HIGH PERFORMANCE CONCRETE OVERLAYS PLACED ON ROUTE 60 OVER LYNNHAVEN INLET IN VIRGINIA, 1–76.

  129. Ding J, Zhu J, Kang J, Wang X (2021) Experimental study on grouped stud shear connectors in precast steel- UHPC composite bridge. Eng Struct. https://doi.org/10.1016/j.engstruct.2021.112479

    Article  Google Scholar 

  130. Al-Osta MA, Ahmad S, Al-Madani MK, Khalid HR, Al-Huri M, Al-Fakih A (2022) Performance of bond strength between ultra-high-performance concrete and concrete substrates (concrete screed and self-compacted concrete): An experimental study. J Build Eng 51:104291. https://doi.org/10.1016/j.jobe.2022.104291

    Article  Google Scholar 

  131. Aaleti S, Sritharan S (2019) Quantifying bonding characteristics between UHPC and normal-strength concrete for bridge deck application, 24: 1–13. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001404

  132. Harris DK, Sarkar J, Ahlborn TTM (2011) Characterization of interface bond of ultra-high-performance concrete bridge deck overlays. Trans Res Record. https://doi.org/10.3141/2240-07

    Article  Google Scholar 

  133. Growth S (2005) Sustainable and advanced MAterials for road infrastructure full scale application of UHPFRC for the rehabilitation of bridges – from the lab to the field.

  134. Sadouki H, Denarié E, Brühwiler E (2017) Validation of a FEA model of structural response of RC-cantilever beams strengthened with a (R-) UHPFRC layer. Constr Build Mater 140:100–108. https://doi.org/10.1016/j.conbuildmat.2017.02.090

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dadi Rambabu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This research was performed in accordance with the ethical standards of the institutional and/or research committee and with the 1964 Helsinki Declaration and its later amendments or comparable.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rambabu, D., Sharma, S.K., Karthik, P. et al. A review of application of UHPFRC in bridges as an overlay. Innov. Infrastruct. Solut. 8, 57 (2023). https://doi.org/10.1007/s41062-022-01030-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41062-022-01030-4

Keywords

Navigation