Log in

Progress of Metal Nanomaterial Controllable Preparation by Photoreduction

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Metal nanoparticles (NPs) are widely used in biomedicine, catalysis, environment, electronics, and other fields, which is closely related to its structural form. For this purpose, researchers have been looking for a simple, green, and controllable way to mass produce metal nanomaterials with desired characteristics (shape, size, stability, etc.). Due to the surface plasmon resonance (SPR) effect of metal nanoparticles, photoreduction method can control the morphology of metal nanoparticles well, which is also simple, large-scalable, and energy-saving. This review provides an overview of the photoreduction method for the synthesis of metal nanoparticles and discusses the factors such as the light source, pH value, reagents, and temperature on the morphology of the nanoparticles. Finally, the challenges and development trends in the controlled preparation of nanomaterials are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Bai S, Qiu H, Song M, He G, Wang F, Liu Y, Guo L (2022) eScience 2:428. https://doi.org/10.1016/j.esci.2022.06.006

  2. Zheng J, Lyu Y, Veder J-P, Johannessen B, Wang R, De Marco R, Huang A, Jiang SP, Wang S (2021) J Phys Chem C 125:23041. https://doi.org/10.1021/acs.jpcc.1c07278

    Article  CAS  Google Scholar 

  3. Zheng J, Lyu Y, Huang A, Johannessen B, Cao X, Jiang SP, Wang S (2023) Chin J Catal 45:141. https://doi.org/10.1016/S1872-2067(22)64178-0

    Article  CAS  Google Scholar 

  4. Sun X, Li L, ** S, Shao W, Wang H, Zhang X, **e Y (2023) eScience 3:100095. https://doi.org/10.1016/j.esci.2023.100095

  5. Choi C, Cheng T, Flores Espinosa M, Fei H, Duan X, Goddard Iii WA, Huang Y (2019) Adv Mater 31:1805405. https://doi.org/10.1002/adma.201805405

    Article  CAS  Google Scholar 

  6. Huang Y, Handoko AD, Hirunsit P, Yeo BS (2017) ACS Catal 7:1749. https://doi.org/10.1021/acscatal.6b03147

    Article  CAS  Google Scholar 

  7. Farooqi SA, Farooqi AS, Sajjad S, Yan C, Victor AB (2023) Environ Chem Lett 21:1515. https://doi.org/10.1007/s10311-023-01565-7

    Article  CAS  Google Scholar 

  8. Meng Q, Meng H, Pan Y, Liu J, Li J, Qi Y, Huang Y, Meng Q (2022) J Mater Chem B 10:271. https://doi.org/10.1039/D1TB02015C

    Article  CAS  PubMed  Google Scholar 

  9. Brown TD, Habibi N, Wu D, Lahann J, Mitragotri S (2020) ACS Biomater Sci Eng 6:4916. https://doi.org/10.1021/acsbiomaterials.0c00743

    Article  CAS  PubMed  Google Scholar 

  10. Korkmaz Ş, Geçici B, Korkmaz SD, Mohammadigharehbagh R, Pat S, Özen S, Şenay V, Yudar HH (2016) Vacuum 131:142. https://doi.org/10.1016/j.vacuum.2016.06.010

    Article  CAS  Google Scholar 

  11. Tad**e R, Houimi A, Alim MM, Oudini N (2022) Thin Solid Films 741:139013. https://doi.org/10.1016/j.tsf.2021.139013

    Article  CAS  Google Scholar 

  12. Pat S, Korkmaz Ş, Özen S, Şenay V (2016) J Alloys Compd 657:711. https://doi.org/10.1016/j.jallcom.2015.10.150

    Article  CAS  Google Scholar 

  13. Elmas S, Pat S, Mohammadigharehbagh R, Musaoğlu C, Özgür M, Demirkol U, Özen S, Korkmaz Ş (2019) Physica B 557:27. https://doi.org/10.1016/j.physb.2018.12.039

    Article  CAS  Google Scholar 

  14. Suja M, Bashar SB, Morshed MM, Liu J (2015) ACS Appl Mater Interfaces 7:8894. https://doi.org/10.1021/acsami.5b01564

    Article  CAS  PubMed  Google Scholar 

  15. Harzer TP, Djaziri S, Raghavan R, Dehm G (2015) Acta Mater 83:318. https://doi.org/10.1016/j.actamat.2014.10.013

    Article  CAS  Google Scholar 

  16. Leu M-S, Lo S-C, Wu JB, Li A-K (2006) Surf Coat Technol 201:3982. https://doi.org/10.1016/j.surfcoat.2006.08.001

    Article  CAS  Google Scholar 

  17. Liu X-M, Miao S-B, Ji B-M (2007) J Phys Chem Solids 68:1375. https://doi.org/10.1016/j.jpcs.2007.02.032

    Article  CAS  Google Scholar 

  18. Li Q, Wang C (2003) Chem Phys Lett 375:525. https://doi.org/10.1016/s0009-2614(03)00889-3

    Article  CAS  Google Scholar 

  19. Zhang DW, Chen CH, Zhang J, Ren F (2005) Chem Mater 17:5242. https://doi.org/10.1021/cm051584c

    Article  CAS  Google Scholar 

  20. Yu Y, Shi Y, Chen C-H, Wang C (2008) J Phys Chem C 112:4176. https://doi.org/10.1021/jp800071h

    Article  CAS  Google Scholar 

  21. Mirac Dizman H, Kazancioglu EO, Shigemune T, Takahara S, Arsu N (2022) Spectrochim Acta A Mol Biomol Spectrosc 264:120294. https://doi.org/10.1016/j.saa.2021.120294

    Article  CAS  PubMed  Google Scholar 

  22. Metin E, Batibay GS, Arsu N (2018) J Photochem Photobiol A 356:1. https://doi.org/10.1016/j.jphotochem.2017.12.009

    Article  CAS  Google Scholar 

  23. Dadashi-Silab S, Doran S, Yagci Y (2016) Chem Rev 116:10212. https://doi.org/10.1021/acs.chemrev.5b00586

    Article  CAS  PubMed  Google Scholar 

  24. Zhang C, Pickering CS, Zhang D, Hao R, Moeendarbari S, Fu Y, Lu Y, Hao Y, Liu Y (2016) Mater Res Express 3:055014

    Article  Google Scholar 

  25. Cardoso-Avila PE, Pichardo-Molina JL, Krishna CM, Castro-Beltran R (2015). J Nanopart Res. https://doi.org/10.1007/s11051-015-2920-x

    Article  Google Scholar 

  26. de Araújo CB, Saade J (2014) Mater Chem Phys 148:1184

    Article  Google Scholar 

  27. Zheng X, Xu W, Corredor C, Xu S, An J, Zhao B, Lombardi JR (2007) J Phys Chem C 111:14962. https://doi.org/10.1021/jp074583b

    Article  CAS  Google Scholar 

  28. Scaiano JC, Stamplecoskie KG, Hallett-Tapley GL (2012) Chem Commun (Camb) 48:4798. https://doi.org/10.1039/c2cc30615h

    Article  CAS  PubMed  Google Scholar 

  29. Majhi S (2021) Photochem Photobiol Sci 20:1357. https://doi.org/10.1007/s43630-021-00100-3

    Article  CAS  PubMed  Google Scholar 

  30. Khamhaengpol A, Siri S (2016) J Photochem Photobiol B 163:337. https://doi.org/10.1016/j.jphotobiol.2016.09.003

    Article  CAS  PubMed  Google Scholar 

  31. Scaiano JC, Stamplecoskie KG (2010) J Am Chem Soc 132:1825

    Article  PubMed  Google Scholar 

  32. Oh B-T, Lee J-H, Lim J-M, Bang K-S, Velmurugan P, Park Y-J, Park Y-J (2016) J Photochem Photobiol B 162:93

    Article  PubMed  Google Scholar 

  33. Tang B, Sun L, Li J, Zhang M, Wang X (2015) Chem Eng J 260:99. https://doi.org/10.1016/j.cej.2014.08.044

    Article  CAS  Google Scholar 

  34. Sritong N, Chumsook S, Siri S (2018) Artif Cells Nanomed Biotechnol 46:955

    Article  CAS  PubMed  Google Scholar 

  35. Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011) Colloids Surf B Biointerfaces 82:152. https://doi.org/10.1016/j.colsurfb.2010.08.036

    Article  CAS  PubMed  Google Scholar 

  36. Wood RW (1902) Philos Mag J Sci 4:396. https://doi.org/10.1080/14786440209462857

    Article  Google Scholar 

  37. Capelli D, Scognamiglio V, Montanari R (2023) TrAC, Trends Anal Chem 163:117079. https://doi.org/10.1016/j.trac.2023.117079

    Article  CAS  Google Scholar 

  38. Polavarapu L, Zhou N, Gao N, Yuan P, Wang Q, Xu Q-H, Pan Y (2013) Nanoscale 5:4236

    Article  PubMed  Google Scholar 

  39. Huang H, Yang Y (2008) Compos Sci Technol 68:2948

    Article  CAS  Google Scholar 

  40. Negrea A, Pascu B, Mihalcea C, Duda-Seiman DM, Bumm LA, Ciopec M, Duteanu N, Nemeş NS, Negrea P (2023) Int J Mol Sci 24:255

    Google Scholar 

  41. Sudeep P, Kamat PV (2005) Chem Mater 17:5404

    Article  CAS  Google Scholar 

  42. Dong S-A, Zhou S-P (2007) Mater Sci Eng B 140:153. https://doi.org/10.1016/j.mseb.2007.03.020

    Article  CAS  Google Scholar 

  43. Kasthuri J, Annadhasan M, Rajendiran N (2015) RSC Adv 5:11458

    Article  Google Scholar 

  44. Yu AK, Kudrinskiy AA, Olenin AY, Lisichkin GV (2008) Russ Chem Rev 77:233. https://doi.org/10.1070/RC2008v077n03ABEH003751

    Article  CAS  Google Scholar 

  45. Zhu X (2013) Preparation of copper nanoparticles, copper film and pattern by photoreduction method, Ph.D. Dissertation, Bei**g University of Chemical Technology

  46. Personick ML, Langille MR, Zhang J, Wu J, Li S, Mirkin CA (2013) Small 9:1947. https://doi.org/10.1002/smll.201202451

    Article  CAS  PubMed  Google Scholar 

  47. Xue C, Millstone JE, Li S, Mirkin CA (2007) Angew Chem Int Ed Engl 46:8436. https://doi.org/10.1002/anie.200703185

    Article  CAS  PubMed  Google Scholar 

  48. Tanimoto H, Hashiguchi K, Kamiya M (2018) Mater Trans 59:648

    Article  Google Scholar 

  49. Pietrobon B, Kitaev V (2008) Chem Mater 20:5186

    Article  CAS  Google Scholar 

  50. Argento GM, Judd DR, Etemad LL, Bechard MM, Personick ML (2023) J Phys Chem C 127:3890. https://doi.org/10.1021/acs.jpcc.2c09062

    Article  CAS  Google Scholar 

  51. Mirkin CA, Schatz GC, Zheng J, Kelly KL, ** R, Cao Y (2001) Science 294:1901

    Article  PubMed  Google Scholar 

  52. Xue C, Mirkin CA (2007) Angew Chem Int Ed 46:2036. https://doi.org/10.1002/anie.200604637

    Article  CAS  Google Scholar 

  53. Xue C, Metraux GS, Millstone JE, Mirkin CA (2008) J Am Chem Soc 130:8337. https://doi.org/10.1021/ja8005258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Brus L, Maillard M, Huang P (2003) Nano Lett 3:1611

    Article  Google Scholar 

  55. Kim B-H, Lee J-S (2015) Mater Chem Phys 149:678

    Article  Google Scholar 

  56. Grzelczak M, Liz-Marzan LM (2014) Chem Soc Rev 43:2089. https://doi.org/10.1039/c3cs60256g

    Article  CAS  PubMed  Google Scholar 

  57. Xue C, Gan CL, Boey F, Zhang H, Li S, Huang X, Qi X, Huang Y (2010) ACS Nano 4:6196

    Article  PubMed  Google Scholar 

  58. Liu C, Singh DJ, Wang H, Zhao H, Wang Q, Xue T, Guan W, Cui X, Zheng X, Wang Z (2014) Nanoscale 6:7295

    Article  PubMed  Google Scholar 

  59. Sadtler B, Tan C, Qin C (2017) J Mater Chem C 5:5628

    Article  Google Scholar 

  60. Zheng X, Zhao X, Guo D, Tang B, Xu S, Zhao B, Xu W, Lombardi JR (2009) Langmuir 25:3802. https://doi.org/10.1021/la803814j

    Article  CAS  PubMed  Google Scholar 

  61. Krajczewski J, Joubert V, Kudelski A (2014) Colloids Surf A 456:41. https://doi.org/10.1016/j.colsurfa.2014.05.005

    Article  CAS  Google Scholar 

  62. Shukla G, Mukherji S, Bharti S, Mukherji S (2018) Phys Sci Rev 4:20170082

    Google Scholar 

  63. Mota DR, Lima GAS, Helene GB, Pellosi DS (2020) ACS Appl Nano Mater 3:4893. https://doi.org/10.1021/acsanm.0c01078

    Article  CAS  Google Scholar 

  64. Yaremchuk I, Iluin O, Bulavinets T, Bobitski Y (2021) Appl Nanosci 1

  65. Zhang J, Langille MR, Mirkin CA (2011) Nano Lett 11:2495. https://doi.org/10.1021/nl2009789

    Article  CAS  PubMed  Google Scholar 

  66. Ramírez AM, Urzúa E, Ávila-Salas F, Lorca-Ponce J, Ahumada M (2023) Appl Surf Sci 617:156584

    Article  Google Scholar 

  67. Callegari A, Tonti D, Chergui M (2003) Nano Lett 3:1565. https://doi.org/10.1021/nl034757a

    Article  CAS  Google Scholar 

  68. Bastys V, Pastoriza-Santos I, Rodríguez-González B, Vaisnoras R, Liz-Marzán LM (2006) Adv Funct Mater 16:766. https://doi.org/10.1002/adfm.200500667

    Article  CAS  Google Scholar 

  69. Ge J, Goebl J, Zhang Q, Pham T, Hu Y, Yin Y, Lu Z (2009) Angew Chem 121:3568

    Article  Google Scholar 

  70. Tünnermann A, Beckert E, Kemper F, Eberhardt R (2017) RSC Adv 7:41603

    Article  Google Scholar 

  71. Balan L, Vidal L, Schneider R, Buruiana T, Melinte V (2012) Nanotechnology 23:415705

    Article  CAS  PubMed  Google Scholar 

  72. Wang K, Zhang T, Yang X, Qin Y, Liu Z (2019) Colloids Surf A 570:89

    Article  CAS  Google Scholar 

  73. Van H, Dien ND, Ca NX, Van Truong N, Tan PM, Van Do P, Pham TTH, Tran TT, Vu XH (2020) J Electron Mater 49:5009

    Article  Google Scholar 

  74. Cataño DL, Rodríguez GC, Gauthier G, Cala JS, Ladeira L (2017) J Phys Conf Ser, vol 935. IOP Publishing, p 012027

  75. Cheng J, Ge L, **ong B, He Y (2011) J Chin Chem Soc 58:822. https://doi.org/10.1002/jccs.201190128

    Article  CAS  Google Scholar 

  76. Demirbas A, Unal IS, Onal I, Ocsoy I, Ildiz N (2020) J Photochem Photobiol B 204:111800

    Article  PubMed  Google Scholar 

  77. Trojanowska A, Tylkowski B, Marciniak L, Nowak M, Jastrzab R (2020) Materials 13:5444

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chutrakulwong F, Thamaphat K, Limsuwan P (2020) J Phys Commun 4:095015

    Article  CAS  Google Scholar 

  79. Laverde-Catañoa DA, Peña-Ballesterosa DY, Merchan‐Arenasc D, Conde-Rodrígueza GR, Gauthiera GH, Sanabria-Calaa JA, Ladeirab LO (2018) Chem Eng 64

  80. Compagnini G, Pulvirenti M, Condorelli M, Scardaci V (2020) J Mater Chem C 8:9734

    Article  Google Scholar 

  81. Shiraishi Y, Tanaka H, Sakamoto H, Ichikawa S, Hirai T (2017) RSC Adv 7:6187. https://doi.org/10.1039/c6ra27771c

    Article  CAS  Google Scholar 

  82. Chaumeil H, Defoin A, Versace D-L, Malval J-P, Balan L, ** M, Soppera O, Schneider R (2010) J Phys Chem C 114:10396

    Article  Google Scholar 

  83. Darroudi M, Ahmad MB, Zak AK, Zamiri R, Hakimi M (2011) Int J Mol Sci 12:6346. https://doi.org/10.3390/ijms12096346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kempa T, Farrer RA, Giersig M, Fourkas JT (2006) Plasmonics 1:45. https://doi.org/10.1007/s11468-006-9008-5

    Article  CAS  Google Scholar 

  85. Abu Bakar NHH, Ismail J, Abu Bakar M (2007) Mater Chem Phys 104:276. https://doi.org/10.1016/j.matchemphys.2007.03.015

    Article  CAS  Google Scholar 

  86. Courrol LC, de Oliveira Silva FR, Gomes L (2007) Colloids Surf A 305:54. https://doi.org/10.1016/j.colsurfa.2007.04.052

    Article  CAS  Google Scholar 

  87. Radoń A, Łukowiec D (2020) J Mater Sci 55:2796. https://doi.org/10.1007/s10853-019-04136-w

    Article  CAS  Google Scholar 

  88. Wang L, Wei G, Guo C, Sun L, Sun Y, Song Y, Yang T, Li Z (2008) Colloids Surf A 312:148. https://doi.org/10.1016/j.colsurfa.2007.06.043

    Article  CAS  Google Scholar 

  89. Dubas ST, Pimpan V (2008) Talanta 76:29. https://doi.org/10.1016/j.talanta.2008.01.062

    Article  CAS  PubMed  Google Scholar 

  90. Lin SK, Cheng WT (2020) Mater Lett 261:127077

    Article  CAS  Google Scholar 

  91. Teixeira PR, Santos MSC, Silva ALG, Bao SN, Azevedo RB, Sales MJA, Paterno LG (2016) Colloids Surf B Biointerfaces 148:317. https://doi.org/10.1016/j.colsurfb.2016.09.002

    Article  CAS  PubMed  Google Scholar 

  92. Beil A, Muller G, Kaser D, Hattendorf B, Li Z, Krumeich F, Rosenthal A, Rana VK, Schonberg H, Benko Z, Grutzmacher H (2018) Angew Chem Int Ed Engl 57:7697. https://doi.org/10.1002/anie.201800456

    Article  CAS  PubMed  Google Scholar 

  93. Liu C, Wang D, Wang H, Chen J, Wang Q, Xue T, Zheng W, Zheng X, Cui X, ** Z (2012) J Phys Chem C 116:24268

    Article  Google Scholar 

  94. Lian J, Lin M, Li X, Chan Y (2011) J Am Chem Soc 133:672

    Article  PubMed  Google Scholar 

  95. Mori H, Matsumura M, Ikeda S, Higashida S, Harada T, Sakata T, Ng YH (2007) Adv Mater 19:597

    Article  Google Scholar 

  96. Celasco E, Amici J, Sangermano M, Yagci Y (2011) Eur Polym J 47:1250

    Article  Google Scholar 

  97. Cook WD, Nghiem QD, Chen Q, Chen F, Sangermano M (2011) Macromolecules 44:4065. https://doi.org/10.1021/ma200575n

    Article  CAS  Google Scholar 

  98. Buruiana EC, Chibac AL, Buruiana T, Melinte V, Balan L (2012). J Nanopart Res. https://doi.org/10.1007/s11051-012-1335-1

    Article  Google Scholar 

  99. Xu H-J, Huang J-C, Yin J, Qian X-F, Zhu Z-K (2001) Mater Chem Phys 69:172

    Article  Google Scholar 

  100. Sakamoto M, Tachikawa T, Fujitsuka M, Majima T (2006) Langmuir 22:6361. https://doi.org/10.1021/la060304k

    Article  CAS  PubMed  Google Scholar 

  101. Sakamoto M, Tachikawa T, Fujitsuka M, Majima T (2006) Chem Phys Lett 420:90. https://doi.org/10.1016/j.cplett.2005.12.053

    Article  CAS  Google Scholar 

  102. Sakamoto M, Fujitsuka M, Majima T, Tachikawa T (2007) Adv Funct Mater 17:857. https://doi.org/10.1002/adfm.200600700

    Article  CAS  Google Scholar 

  103. Dzhardimalieva G, Kydralieva K, Bogdanova L, Spirin M, Zarrelli M, Lesnichaya V, Shershnev V, Irzhak V (2021) Mater Today Proc 34:156

    Article  Google Scholar 

  104. Sangermano M, Sahin O, Marchi S, Grassini S, Ozturk T, Yagci Y (2011) React Funct Polym 71:857

    Article  Google Scholar 

  105. Rizza G, Sangermano M, Yagci Y (2008) Macromolecules 41:7268

    Article  Google Scholar 

  106. Rizza G, Sangermano M, Yagci Y (2007) Macromolecules 25:8827

    Google Scholar 

  107. Rizza G, Sangermano M, Yagci Y (2008) Polymer 49:5195

    Article  Google Scholar 

  108. Camara VA, Dizman C, Roppolo I, Torun L, Sangermano M, Ates S, Yagci Y (2011) Macromol Mater Eng 296:820

    Article  Google Scholar 

  109. dell’Erba IE, Martínez FD, Hoppe CE, Eliçabe GE, Ceolín M, Zucchi IA, Schroeder WF (2017) Langmuir 33:10248. https://doi.org/10.1021/acs.langmuir.7b01936

    Article  CAS  PubMed  Google Scholar 

  110. Balan L, Malval J-P, Schneider R, Le Nouen D, Lougnot D-J (2010) Polymer 51:1363. https://doi.org/10.1016/j.polymer.2009.05.003

    Article  CAS  Google Scholar 

  111. Rizza G, Sangermano M, Yagci Y (2008) Chemical Commun 2771

  112. Odaci D, Uygun M, Kahveci MU, Timur S, Yagci Y (2009) Macromol Chem Phys 210:1867

    Article  Google Scholar 

  113. Henríquez CMG, del Carmen Pizarro Guerra G, Jimenez LMR, Vallejos MAS, Flores MTU, de la Fuente SDR (2014) J Nanostruct Chem 4:119

  114. **e A, Zhang B, Yang L, Shen Y (2007) J Phys Chem C 111:5300

    Google Scholar 

  115. Agostiano A, Laub D, Fanizza E, Curri ML, Cozzoli PD, Comparelli R (2004) J Am Chem Soc 126:3868

    Article  PubMed  Google Scholar 

  116. Yu H, Lv L, Lu Q, Lu Y, Ning Y, Hou Y, Yin Y, Lu Z (2013) Nano Lett 13:5698

    Article  PubMed  Google Scholar 

  117. Li JP, Qian K, Chen SF, Yu SH, Xu WP, Huang WX, Lu Y (2010) Nano Res 3:244

    Article  Google Scholar 

  118. Xu A-W, Yip HY, Yu JC, Kwong KW, Zhang L, Wong PK, Li Q (2003) Langmuir 19:10372

    Article  Google Scholar 

  119. Dinh CT, Nguyen TD, Kleitz F, Do TO (2011) ACS Appl Mater Interfaces 3:2228. https://doi.org/10.1021/am200480b

    Article  CAS  PubMed  Google Scholar 

  120. Colbeau-Justin C, Albiter E, Remita H, Valenzuela M, Alfaro S, Hai Z (2013) J Nanosci Nanotechnol 13:4943

    Article  PubMed  Google Scholar 

  121. Hu B, Peng B, Zhang G, Zhou G, Shui L, Muhler M, ** M, Li N, Chen X (2019) J Energy Chem 36:37

    Article  Google Scholar 

  122. Lightcap IV, Kosel TH, Kamat PV (2010) Nano Lett 10:577. https://doi.org/10.1021/nl9035109

    Article  CAS  PubMed  Google Scholar 

  123. Choi D, Mangadlao JD, Cao P, Advincula RC (2017) ACS Appl Mater Interfaces 9:24887

    Article  PubMed  Google Scholar 

  124. Moon G-H, Kim H-I, Shin Y, Choi W (2012) RSC Adv 2:2205. https://doi.org/10.1039/c2ra00875k

    Article  CAS  Google Scholar 

  125. Huang H, Liu J, Liu N, Yang Y, Liu Y, Kang Z (2014) Green Chem 16:4559

    Article  Google Scholar 

  126. Arsu N, Çeper T (2017) Macromol Chem Phys 218:1700030

    Article  Google Scholar 

  127. Nawafune H, Akamatsu K, Ikeda S (2003) Langmuir 19:10366

    Article  Google Scholar 

  128. Korchev AS, Bozack MJ, Slaten BL, Mills G (2004) J Am Chem Soc 126:10. https://doi.org/10.1021/ja037933q

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the financial support from the National Nature Science Foundation of China (no. 21606098). Six Talent Peaks Project in Jiangsu Province (no. 2018-JNHB-009); Qing Lan Project of Jiangsu Province; Natural Science Key Project of the Jiangsu Higher Education Institutions (20KJA530002); Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices (CEMD-2001); and the Foundation of Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province (HPZ202001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mei Wu, Weichuan Xu or **long Jiang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Li, B., Zhang, W. et al. Progress of Metal Nanomaterial Controllable Preparation by Photoreduction. Top Curr Chem (Z) 381, 34 (2023). https://doi.org/10.1007/s41061-023-00443-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-023-00443-8

Keywords

Navigation