Log in

O-Benzoylhydroxylamines: A Versatile Electrophilic Aminating Reagent for Transition Metal-Catalyzed C–N Bond-Forming Reactions

  • Review
  • Published:
Topics in Current Chemistry Aims and scope Submit manuscript

Abstract

Owing to the prevalence of nitrogen-containing compounds in natural products and important pharmaceutical agents, chemists, have actively searched for the development of efficient and selective methodologies allowing for the facile construction of carbon–nitrogen bonds. Over the last decade, transition metal-catalyzed C–N bond construction via electrophilic amination reaction has emerged as an attractive approach for the synthesis of various organic molecules and pharmaceuticals. Particularly, O-benzoylhydroxylamines as an electrophilic aminating agent have proven to be the best and most widely used in both academic and industrial research. In this review, we highlight the key contributions to the recent transition metal-catalyzed C–N bond formation reactions using O-benzoylhydroxylamines as an aminating agent and their relevant mechanistic insights.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10
Scheme 11
Scheme 12
Scheme 13
Scheme 14
Scheme 15
Scheme 16
Scheme 17
Scheme 18
Scheme 19
Scheme 20
Scheme 21
Scheme 22
Scheme 23
Scheme 24
Scheme 25
Scheme 26
Scheme 27
Scheme 28
Scheme 29
Scheme 30
Scheme 31
Scheme 32
Scheme 33
Scheme 34
Scheme 35
Scheme 36
Scheme 37
Scheme 38
Scheme 39
Scheme 40
Scheme 41
Scheme 42
Scheme 43
Scheme 44
Scheme 45
Scheme 46
Scheme 47
Scheme 48
Scheme 49
Scheme 50
Scheme 51
Scheme 52
Scheme 53
Scheme 54
Scheme 55
Scheme 56
Scheme 57
Scheme 58
Scheme 59
Scheme 60
Scheme 61
Scheme 62
Scheme 63
Scheme 64
Scheme 65
Scheme 66
Scheme 67
Scheme 68
Scheme 69
Scheme 70
Scheme 71
Scheme 72
Scheme 73
Scheme 74
Scheme 75
Scheme 76
Scheme 77
Scheme 78

Similar content being viewed by others

Data availability

This work is review article, and as such, readers will need to contact referenced authors to obtain additional information regarding the data presented.

References

  1. Zhao Y, **a W (2018) Recent advances in radical-based C–N bond formation: via photo-/electrochemistry. Chem Soc Rev 20:20

    CAS  Google Scholar 

  2. Wang Q, Su Y, Li L, Huang H (2016) Transition-metal catalysed C–N bond activation. Chem Soc Rev 20:20

    CAS  Google Scholar 

  3. Zheng YN, Zheng H, Li T, Wei WT (2021) Recent advances in copper-catalyzed C−N bond formation involving N-centered radicals. Chemsuschem 20:20

    Google Scholar 

  4. Collet F, Lescot C, Dauban P (2011) Catalytic C–H amination: the stereoselectivity issue. Chem Soc Rev. https://doi.org/10.1039/c0cs00095g

    Article  PubMed  Google Scholar 

  5. Jeffrey JL, Sarpong R (2013) Intramolecular C(sp3)–H amination. Chem Sci. https://doi.org/10.1039/c3sc51420j

    Article  Google Scholar 

  6. Lu Z, Ma S (2008) Metal-catalyzed enantioselective allylation in asymmetric synthesis. Angew Chem Int Ed 20:25

    Google Scholar 

  7. Barker TJ, Jarvo ER (2011) Developments in transition-metal-catalyzed reactions using electrophilic nitrogen sources. Synthesis (Stuttg) 20:25

    Google Scholar 

  8. Wang C (2020) Development of transition-metal-catalysed cross-coupling reactions through ammonium C–N bond cleavage. Chem Pharm Bull 25:25

    Google Scholar 

  9. Goodbrand HB, Hu NX (1999) Ligand-accelerated catalysis of the Ullmann condensation: application to hole-conducting triarylamines. J Org Chem. https://doi.org/10.1021/jo981804o

    Article  Google Scholar 

  10. Strieter ER, Blackmond DG, Buchwald SL (2005) The role of chelating diamine ligands in the Goldberg reaction: a kinetic study on the copper-catalyzed amidation of aryl iodides. J Am Chem Soc. https://doi.org/10.1021/ja050120c

    Article  PubMed  Google Scholar 

  11. Klapars A, Huang X, Buchwald SL (2002) A general and efficient copper catalyst for the amidation of aryl halides. J Am Chem Soc. https://doi.org/10.1021/ja0260465

    Article  PubMed  Google Scholar 

  12. Bruno NC, Tudge MT, Buchwald SL (2013) Design and preparation of new palladium precatalysts for C-C and C–N cross-coupling reactions. Chem Sci. https://doi.org/10.1039/c2sc20903a

    Article  PubMed  Google Scholar 

  13. Roizen JL, Harvey ME, Du BJ (2012) Metal-catalyzed nitrogen-atom transfer methods for the oxidation of aliphatic C–H bonds. Acc Chem Res. https://doi.org/10.1021/ar200318q

    Article  PubMed  PubMed Central  Google Scholar 

  14. Simon RC, Grischek B, Zepeck F et al (2012) Regio- and stereoselective monoamination of diketones without protecting groups. Angew Chem Int Ed. https://doi.org/10.1002/anie.201202375

    Article  Google Scholar 

  15. Simon RC, Grischek B, Zepeck F et al (2012) Regio- and stereoselective monoamination of diketones without protecting groups. Angew Chem. https://doi.org/10.1002/ange.201202375

    Article  Google Scholar 

  16. Campbell AN, Stahl SS (2012) Overcoming the ‘oxidant problem’: strategies to use O2 as the oxidant in organometallic C–H oxidation reactions catalyzed by Pd (and Cu). Acc Chem Res. https://doi.org/10.1021/ar2002045

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gephart RT, Warren TH (2012) Copper-catalyzed sp3 C-H amination. Organometallics 25:24

    Google Scholar 

  18. Louillat ML, Patureau FW (2014) Oxidative C-H amination reactions. Chem Soc Rev 25:45

    Google Scholar 

  19. Yan X, Yang X, ** C (2014) Recent progress in copper-catalyzed electrophilic amination. Catal Sci Technol 20:25

    Google Scholar 

  20. Erdik E, Ay M (1989) Electrophilic amination of carbanions. Chem Rev. https://doi.org/10.1021/cr00098a014

    Article  Google Scholar 

  21. Daşkapan T (2011) Synthesis of amines by the electrophilic amination of organomagnesium,- zinc,-copper, and-lithium reagents. ARKIVOC. https://doi.org/10.3998/ark.5550190.0012.520

    Article  Google Scholar 

  22. Dong X, Liu Q, Dong Y, Liu H (2017) Transition-metal-catalyzed electrophilic amination: application of O-benzoylhydroxylamines in the construction of the C−N bond. Chem A Eur J 20:25

    Google Scholar 

  23. Berman AM, Johnson JS (2004) Copper-catalyzed electrophilic amination of diorganozinc reagents. J Am Chem Soc. https://doi.org/10.1021/ja049474e

    Article  PubMed  Google Scholar 

  24. Cho SH, Kim JY, Kwak J, Chang S (2011) Recent advances in the transition metal-catalyzed twofold oxidative C–H bond activation strategy for C–C and C–N bond formation. Chem Soc Rev. https://doi.org/10.1039/c1cs15082k

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bariwal J, Van Der Eycken E (2013) C-N bond forming cross-coupling reactions: an overview. Chem Soc Rev 20:525

    Google Scholar 

  26. Beccalli EM, Broggini G, Martinelli M, Sottocornola S (2007) C-C, C-O, C-N bond formation on sp2 carbon by Pd(II)-catalyzed reactions involving oxidant agents. Chem Rev 25:25

    Google Scholar 

  27. Luo J, Wei WT (2018) Recent Advances in the construction of C–N bonds through coupling reactions between carbon radicals and nitrogen radicals. Adv Synth Catal 25:45

    Google Scholar 

  28. Campbell MJ, Johnson JS (2007) Mechanistic studies of the copper-catalyzed electrophilic amination of diorganozinc reagents and development of a zinc-free protocol. Org Lett. https://doi.org/10.1021/ol0702829

    Article  PubMed  Google Scholar 

  29. McDonald SL, Wang Q (2014) Copper-catalyzed α-amination of phosphonates and phosphine oxides: a direct approach to α-amino phosphonic acids and derivatives. Angew Chem. https://doi.org/10.1002/ange.201308890

    Article  Google Scholar 

  30. Rucker RP, Whittaker AM, Dang H, Lalic G (2012) Synthesis of hindered anilines: copper-catalyzed electrophilic amination of aryl boronic esters. Angew Chem Int Ed. https://doi.org/10.1002/anie.201200480

    Article  Google Scholar 

  31. Müller TE, Hultzsch KC, Yus M et al (2008) Hydroamination: direct addition of amines to alkenes and alkynes. Chem Rev. https://doi.org/10.1021/cr0306788

    Article  PubMed  Google Scholar 

  32. Gooßen LJ, Huang L, Arndt M et al (2015) Late transition metal-catalyzed hydroamination and hydroamidation. Chem Rev 25:25

    Google Scholar 

  33. Johns AM, Sakai N, Ridder A, Hartwig JF (2006) Direct measurement of the thermodynamics of vinylarene hydroamination. J Am Chem Soc. https://doi.org/10.1021/ja062773e

    Article  PubMed  Google Scholar 

  34. Müller TE, Beller M (1998) Metal-initiated amination of alkenes and alkynes. Chem Rev. https://doi.org/10.1021/cr960433d

    Article  PubMed  Google Scholar 

  35. Seebach D, Corey EJ (1975) Generation and synthetic applications of 2-lithio-1,3-dithianes. J Org Chem. https://doi.org/10.1021/jo00890a018

    Article  Google Scholar 

  36. Seebach D (1979) Methods of reactivity umpolung. Angew Chem Int Ed English 25:25

    Google Scholar 

  37. Miki Y, Hirano K, Satoh T, Miura M (2013) Copper-catalyzed intermolecular regioselective hydroamination of styrenes with polymethylhydrosiloxane and hydroxylamines. Angew Chem Int Ed. https://doi.org/10.1002/anie.201304365

    Article  Google Scholar 

  38. Zhu S, Niljianskul N, Buchwald SL (2013) Enantio- and regioselective CuH-catalyzed hydroamination of alkenes. J Am Chem Soc. https://doi.org/10.1021/ja4092819

    Article  PubMed  PubMed Central  Google Scholar 

  39. Miki Y, Hirano K, Satoh T, Miura M (2014) Copper-catalyzed enantioselective formal hydroamination of oxa- and azabicyclic alkenes with hydrosilanes and hydroxylamines. Org Lett. https://doi.org/10.1021/ol5003219

    Article  PubMed  Google Scholar 

  40. Niljianskul N, Zhu S, Buchwald SL (2015) Enantioselective synthesis of α-aminosilanes by copper-catalyzed hydroamination of vinylsilanes. Angew Chem. https://doi.org/10.1002/ange.201410326

    Article  Google Scholar 

  41. Shi SL, Buchwald SL (2015) Copper-catalysed selective hydroamination reactions of alkynes. Nat Chem. https://doi.org/10.1038/nchem.2131

    Article  PubMed  Google Scholar 

  42. Niu D, Buchwald SL (2015) Design of modified amine transfer reagents allows the synthesis of α-chiral secondary amines via CuH-catalyzed hydroamination. J Am Chem Soc. https://doi.org/10.1021/jacs.5b05446

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ichikawa S, Zhu S, Buchwald SL (2018) A modified system for the synthesis of enantioenriched N-arylamines through copper-catalyzed hydroamination. Angew Chem Int Ed. https://doi.org/10.1002/anie.201803026

    Article  Google Scholar 

  44. Feng S, Hao H, Liu P, Buchwald SL (2020) Diastereo- and enantioselective CuH-catalyzed hydroamination of strained trisubstituted alkenes. ACS Catal. https://doi.org/10.1021/acscatal.9b04871

    Article  PubMed  Google Scholar 

  45. Ichikawa S, Buchwald SL (2019) Asymmetric synthesis of γ-amino alcohols by copper-catalyzed hydroamination. Org Lett. https://doi.org/10.1021/acs.orglett.9b03356

    Article  PubMed  PubMed Central  Google Scholar 

  46. Takata T, Nishikawa D, Hirano K, Miura M (2018) Synthesis of α-aminophosphines by copper-catalyzed regioselective hydroamination of vinylphosphines. Chem A Eur J. https://doi.org/10.1002/chem.201802491

    Article  Google Scholar 

  47. Yang Q, Li S, Wang J (2020) Asymmetric synthesis of chiral chromanes by copper-catalyzed hydroamination of 2H-chromenes. ChemCatChem. https://doi.org/10.1002/cctc.202000601

    Article  Google Scholar 

  48. Takata T, Hirano K, Miura M (2019) Synthesis of α-trifluoromethylamines by Cu-catalyzed regio- and enantioselective hydroamination of 1-trifluoromethylalkenes. Org Lett. https://doi.org/10.1021/acs.orglett.9b01471

    Article  PubMed  Google Scholar 

  49. Nishino S, Miura M, Hirano K (2021) An umpolung-enabled copper-catalysed regioselective hydroamination approach to α-amino acids. Chem Sci. https://doi.org/10.1039/d1sc03692k

    Article  PubMed  PubMed Central  Google Scholar 

  50. Jeon J, Lee C, Seo H, Hong S (2020) NiH-catalyzed proximal-selective hydroamination of unactivated alkenes. J Am Chem Soc. https://doi.org/10.1021/jacs.0c10333

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lee C, Seo H, Jeon J, Hong S (2021) γ-Selective C(sp3)–H amination via controlled migratory hydroamination. Nat Commun. https://doi.org/10.1038/s41467-021-25696-z

    Article  PubMed  PubMed Central  Google Scholar 

  52. Lee C, Kang H-J, Seo H, Hong S (2022) Nickel-catalyzed regio- and enantioselective hydroamination of unactivated alkenes using carbonyl directing groups. J Am Chem Soc 144:9091–9100. https://doi.org/10.1021/jacs.2c02343

    Article  CAS  PubMed  Google Scholar 

  53. Yang D, Huang H, Zhang H et al (2021) Regioselective intermolecular hydroamination of unactivated alkenes: ‘co-H’ enabled remote functionalization. ACS Catal. https://doi.org/10.1021/acscatal.1c00625

    Article  PubMed  PubMed Central  Google Scholar 

  54. Matsuda N, Hirano K, Satoh T, Miura M (2013) Regioselective and stereospecific copper-catalyzed aminoboration of styrenes with bis(pinacolato)diboron and O-benzoyl-N,N-dialkylhydroxylamines. J Am Chem Soc 20:25. https://doi.org/10.1021/ja4007645

    Article  CAS  Google Scholar 

  55. Sakae R, Matsuda N, Hirano K et al (2014) Highly stereoselective synthesis of (borylmethyl)cyclopropylamines by copper-catalyzed aminoboration of methylenecyclopropanes. Org Lett. https://doi.org/10.1021/ol5001507

    Article  PubMed  Google Scholar 

  56. Sakae R, Hirano K, Satoh T, Miura M (2015) Copper-catalyzed stereoselective aminoboration of bicyclic alkenes. Angew Chem. https://doi.org/10.1002/ange.201409104

    Article  Google Scholar 

  57. Sakae R, Hirano K, Miura M (2015) Ligand-controlled regiodivergent Cu-catalyzed aminoboration of unactivated terminal alkenes. J Am Chem Soc. https://doi.org/10.1021/jacs.5b02775

    Article  PubMed  Google Scholar 

  58. Kato K, Hirano K, Miura M (2017) Copper/bisphosphine catalysts in the internally borylative aminoboration of unactivated terminal alkenes with bis(pinacolato)diboron. J Org Chem. https://doi.org/10.1021/acs.joc.7b01874

    Article  PubMed  Google Scholar 

  59. Kato K, Hirano K, Miura M (2018) Copper-catalyzed regio- and enantioselective aminoboration of unactivated terminal alkenes. Chem A Eur J. https://doi.org/10.1002/chem.201801070

    Article  Google Scholar 

  60. Gao DW, Gao Y, Shao H et al (2020) Cascade CuH-catalysed conversion of alkynes into enantioenriched 1,1-disubstituted products. Nat Catal. https://doi.org/10.1038/s41929-019-0384-6

    Article  PubMed  Google Scholar 

  61. Hemric BN, Chen AW, Wang Q (2019) Copper-catalyzed 1,2-amino oxygenation of 1,3-dienes: a chemo-, regio-, and site-selective three-component reaction with o-acylhydroxylamines and carboxylic acids. ACS Catal. https://doi.org/10.1021/acscatal.9b03076

    Article  PubMed  PubMed Central  Google Scholar 

  62. Li Z, Zhang M, Zhang Y et al (2019) Multicomponent cyclopropane synthesis enabled by Cu-catalyzed cyclopropene carbometalation with organoboron reagent: enantioselective modular access to polysubstituted 2-arylcyclopropylamines. Org Lett. https://doi.org/10.1021/acs.orglett.9b01650

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zhang Y, Li Y, Zhou W et al (2020) Assembly of polysubstituted chiral cyclopropylamines via highly enantioselective Cu-catalyzed three-component cyclopropene alkenylamination. Chem Commun. https://doi.org/10.1039/d0cc01060j

    Article  Google Scholar 

  64. Simaan M, Marek I (2018) Asymmetric catalytic preparation of polysubstituted cyclopropanol and cyclopropylamine derivatives. Angew Chem Int Ed. https://doi.org/10.1002/anie.201710707

    Article  Google Scholar 

  65. Kwon Y, Wang Q (2020) Copper-catalyzed 1,2-aminocyanation of unactivated alkenes via cyano migration. Org Lett. https://doi.org/10.1021/acs.orglett.0c01217

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kwon Y, Zhang W, Wang Q (2021) Copper-catalyzed aminoheteroarylation of unactivated alkenes through distal heteroaryl migration. ACS Catal. https://doi.org/10.1021/acscatal.1c01001

    Article  PubMed  PubMed Central  Google Scholar 

  67. Shen G, Zhao L, Wang Y, Zhang T (2016) Room temperature copper-catalyzed oxidative amidation of terminal alkynes for the synthesis of α-ketoamides using: O-benzoyl hydroxylamines as aminating reagent and oxidant. RSC Adv. https://doi.org/10.1039/c6ra15219h

    Article  PubMed  Google Scholar 

  68. Van Der Puyl VA, Derosa J, Engle KM (2019) Directed, nickel-catalyzed umpolung 1,2-carboamination of alkenyl carbonyl compounds. ACS Catal. https://doi.org/10.1021/acscatal.8b04516

    Article  Google Scholar 

  69. **e L, Wang S, Zhang L et al (2021) Directed nickel-catalyzed regio- and diastereoselective arylamination of unactivated alkenes. Nat Commun. https://doi.org/10.1038/s41467-021-26527-x

    Article  PubMed  PubMed Central  Google Scholar 

  70. Brown HC, Heydkamp WR, Breuer E, Murphy WS (1964) The Reaction of organoboranes with chloramine and with hydroxylamine-O-sulfonic acid. A convenient synthesis of amines from olefins via hydroboration. J Am Chem Soc. https://doi.org/10.1021/ja01071a036

    Article  Google Scholar 

  71. Brown HC, Kim KW, Srebnik M, Bakthan S (1987) Organoboranes for synthesis. 7. An improved general synthesis of primary amines from alkenes via hydroboration-organoborane chemistry. Tetrahedron. https://doi.org/10.1016/S0040-4020(01)83445-1

    Article  Google Scholar 

  72. Rangaishenvi MV, Brown HC, Singaram B (1991) Chiral synthesis via organoboranes. 30. Facile synthesis, by the Matteson asymmetric homologation procedure, of α-methyl boronic acids not available from asymmetric hydroboration and their conversion into the corresponding aldehydes, ketones, carboxylic A. J Org Chem 20:25. https://doi.org/10.1021/jo00010a022

    Article  Google Scholar 

  73. Matsuda N, Hirano K, Satoh T, Miura M (2012) Copper-catalyzed amination of arylboronates with N,N-dialkylhydroxylamines. Angew Chem 25:25. https://doi.org/10.1002/ange.201108773

    Article  Google Scholar 

  74. Rucker RP, Whittaker AM, Dang H, Lalic G (2012) Synthesis of hindered anilines: copper-catalyzed electrophilic amination of aryl boronic esters. Angew Chem. https://doi.org/10.1002/ange.201200480

    Article  Google Scholar 

  75. Rucker RP, Whittaker AM, Dang H, Lalic G (2012) Synthesis of tertiary alkyl amines from terminal alkenes: copper-catalyzed amination of alkyl boranes. J Am Chem Soc. https://doi.org/10.1021/ja3023829

    Article  PubMed  Google Scholar 

  76. **ao Q, Tian L, Tan R et al (2012) Transition-metal-free electrophilic amination of arylboroxines. Org Lett. https://doi.org/10.1021/ol301912a

    Article  PubMed  Google Scholar 

  77. Mlynarski SN, Karns AS, Morken JP (2012) Direct stereospecific amination of alkyl and aryl pinacol boronates. J Am Chem Soc. https://doi.org/10.1021/ja305448w

    Article  PubMed  PubMed Central  Google Scholar 

  78. Nishikawa D, Hirano K, Miura M (2016) Copper-catalyzed regio- and stereoselective aminoboration of alkenylboronates. Org Lett. https://doi.org/10.1021/acs.orglett.6b02338

    Article  PubMed  Google Scholar 

  79. Zhu H, Shen Y, Deng Q et al (2017) One-pot bimetallic Pd/Cu-catalyzed synthesis of sulfonamides from boronic acids, DABSO and O-benzoyl hydroxylamines. Chem Asian J 25:25. https://doi.org/10.1002/asia.201601732

    Article  CAS  Google Scholar 

  80. Chen Y-H, Graßl S, Knochel P (2018) Cobalt-katalysierte elektrophile aminierung von aryl- und heteroarylzinkpivalaten mit N-hydroxylaminbenzoaten. Angew Chem. https://doi.org/10.1002/ange.201710931

    Article  PubMed  Google Scholar 

  81. Graßl S, Chen YH, Hamze C et al (2019) Late stage functionalization of secondary amines via a cobalt-catalyzed electrophilic amination of organozinc reagents. Org Lett. https://doi.org/10.1021/acs.orglett.8b03787

    Article  PubMed  Google Scholar 

  82. Yoon H, Kim Y, Lee Y (2017) Cu-Catalyzed electrophilic amination of internal alkynes via hydroalumination. Org Biomol Chem. https://doi.org/10.1039/c6ob02606k

    Article  PubMed  Google Scholar 

  83. Zhang Q, Hitoshio K, Saito H et al (2020) Copper-catalyzed electrophilic amination of alkoxyarylsilanes. Eur J Org Chem. https://doi.org/10.1002/ejoc.202000562

    Article  Google Scholar 

  84. Lee S, Lee Y (2019) Copper-catalyzed electrophilic amination of benzoxazoles via magnesation. Eur J Org Chem. https://doi.org/10.1002/ejoc.201900335

    Article  Google Scholar 

  85. Wang W, Peng X, Wei F et al (2016) Copper(I)-catalyzed interrupted click reaction: synthesis of diverse 5-hetero-functionalized triazoles. Angew Chem. https://doi.org/10.1002/ange.201509124

    Article  PubMed  Google Scholar 

  86. Hemric BN, Chen AW, Wang Q (2019) Copper-catalyzed modular amino oxygenation of alkenes: access to diverse 1,2-amino oxygen-containing skeletons. J Org Chem. https://doi.org/10.1021/acs.joc.8b02885

    Article  PubMed  PubMed Central  Google Scholar 

  87. Yang Z, Jiang K, Chen YC, Wei Y (2019) Copper-catalyzed dihydroquinolinone synthesis from isocyanides and O-benzoyl hydroxylamines. J Org Chem. https://doi.org/10.1021/acs.joc.9b00262

    Article  PubMed  PubMed Central  Google Scholar 

  88. Peterson LJ, Kirsch JK, Wolfe JP (2018) Pd-catalyzed alkene diamination reactions of nitrogen electrophiles: synthesis of cyclic guanidines and ureas bearing dialkylaminomethyl groups. Org Lett. https://doi.org/10.1021/acs.orglett.8b01289

    Article  PubMed  PubMed Central  Google Scholar 

  89. Yu H, Li Z, Bolm C (2018) Copper-catalyzed transsulfinamidation of sulfinamides as a key step in the preparation of sulfonamides and sulfonimidamides. Angew Chem. https://doi.org/10.1002/ange.201810548

    Article  Google Scholar 

  90. Zhu H, Shen Y, Deng Q et al (2017) Ligand-free Pd/Cu-catalyzed aminosulfonylation of aryl iodides for direct sulfonamide syntheses. Asian J Org Chem. https://doi.org/10.1002/ajoc.201700350

    Article  Google Scholar 

  91. Zhang W, Wang C, Wang Q (2020) Copper-catalyzed decarboxylative functionalization of conjugated β, Γ-unsaturated carboxylic acids. ACS Catal 25:45. https://doi.org/10.1021/acscatal.0c03621

    Article  CAS  Google Scholar 

  92. Dai Q, Zhang J (2018) Direct synthesis of sulfinamides by the copper-catalyzed electrophilic amidation of sulfenate anions. Adv Synth Catal. https://doi.org/10.1002/adsc.201701510

    Article  Google Scholar 

  93. Nguyen VT, Haug GC, Nguyen VD et al (2021) Photocatalytic decarboxylative amidosulfonation enables direct transformation of carboxylic acids to sulfonamides. Chem Sci. https://doi.org/10.1039/d1sc01389k

    Article  PubMed  PubMed Central  Google Scholar 

  94. Begam HM, Choudhury R, Behera A, Jana R (2019) Copper-catalyzed electrophilic ortho C(sp2)-H amination of aryl amines: dramatic reactivity of bicyclic system. Org Lett. https://doi.org/10.1021/acs.orglett.9b01546

    Article  PubMed  Google Scholar 

  95. Yao ZL, Wang L, Shao NQ et al (2019) Copper-catalyzed ortho-selective dearomative C–N coupling of simple phenols with O-benzoylhydroxylamines. ACS Catal. https://doi.org/10.1021/acscatal.9b01317

    Article  PubMed  PubMed Central  Google Scholar 

  96. Li M, Wang DH (2021) Copper-catalyzed 3-positional amination of 2-azulenols with O-benzoylhydroxylamines. Org Lett. https://doi.org/10.1021/acs.orglett.1c02132

    Article  PubMed  PubMed Central  Google Scholar 

  97. Rao WH, Li Q, Jiang LL et al (2021) Copper-catalyzed intermolecular C(sp2)-H amination with electrophilic O-benzoyl hydroxylamines. J Org Chem. https://doi.org/10.1021/acs.joc.1c01229

    Article  PubMed  Google Scholar 

  98. Catellani M, Frignani F, Rangoni A (1997) A complex catalytic cycle leading to a regioselective synthesis of O, O-disubstituted vinylarenes. Angew Chem (Int Ed English). https://doi.org/10.1002/anie.199701191

    Article  Google Scholar 

  99. Motti E, Ippomei G, Deledda S, Catellani M (2003) Synthesis of selectively substituted ortho-vinylbiphenyls by palladium-catalysed reaction of ortho-substituted aryl iodides with olefins. Synthesis (Stuttg). https://doi.org/10.1055/s-2003-42441

    Article  Google Scholar 

  100. Martins A, Mariampillai B, Lautens M (2010) Synthesis in the key of Catellani: norbornene-mediated ortho C–H functionalization. Top Curr Chem 25:25

    Google Scholar 

  101. Ferraccioli R (2013) Palladium-catalyzed synthesis of carbo- and heterocycles through norbornene-mediated ortho C–H functionalization. Synth. https://doi.org/10.1055/s-0032-1318218

    Article  Google Scholar 

  102. Ye J, Lautens M (2015) Palladium-catalysed norbornene-mediated C-H functionalization of arenes. Nat Chem 20:25

    Google Scholar 

  103. Della Ca N, Fontana M, Motti E, Catellani M (2016) Pd/norbornene: a winning combination for selective aromatic functionalization via C–H bond activation. Acc Chem Res. https://doi.org/10.1021/acs.accounts.6b00165

    Article  PubMed  Google Scholar 

  104. Dong Z, Dong G (2013) Ortho vs ipso: site-selective pd and norbornene-catalyzed arene C–H amination using aryl halides. J Am Chem Soc. https://doi.org/10.1021/ja410823e

    Article  PubMed  PubMed Central  Google Scholar 

  105. Chen ZY, Ye CQ, Zhu H et al (2014) Palladium/norbornene-mediated tandem C–H amination/C-I alkenylation reaction of aryl iodides with secondary cyclic O-benzoyl hydroxylamines and activated terminal olefins. Chem A Eur J. https://doi.org/10.1002/chem.201400084

    Article  Google Scholar 

  106. Ye C, Zhu H, Chen Z (2014) Synthesis of biaryl tertiary amines through Pd/norbornene joint catalysis in a remote C–H amination/Suzuki coupling reaction. J Org Chem. https://doi.org/10.1021/jo501544h

    Article  PubMed  PubMed Central  Google Scholar 

  107. Zhou PX, Ye YY, Ma JW et al (2014) Palladium-catalyzed/norbornene-mediated ortho-amination/N-tosylhydrazone insertion reaction: an approach to the synthesis of ortho-aminated vinylarenes. J Org Chem. https://doi.org/10.1021/jo501125b

    Article  PubMed  Google Scholar 

  108. Pan S, Ma X, Zhong D et al (2015) Palladium-catalyzed one-pot consecutive amination and Sonogashira coupling for selective synthesis of 2-alkynylanilines. Adv Synth Catal. https://doi.org/10.1002/adsc.201500381

    Article  Google Scholar 

  109. Shi H, Babinski DJ, Ritter T (2015) Modular C–H functionalization cascade of aryl iodides. J Am Chem Soc. https://doi.org/10.1021/jacs.5b01082

    Article  PubMed  PubMed Central  Google Scholar 

  110. Sun F, Gu Z (2015) Decarboxylative alkynyl termination of palladium-catalyzed Catellani reaction: a facile synthesis of α-alkynyl anilines via ortho C–H amination and alkynylation. Org Lett. https://doi.org/10.1021/acs.orglett.5b00830

    Article  PubMed  Google Scholar 

  111. Wang J, Gu Z (2016) Synthesis of 2-(1-alkoxyvinyl)anilines by palladium/norbornene-catalyzed amination followed by termination with vinyl ethers. Adv Synth Catal. https://doi.org/10.1002/adsc.201600339

    Article  PubMed  PubMed Central  Google Scholar 

  112. Majhi B, Ranu BC (2016) Palladium-catalyzed norbornene-mediated tandem ortho-C–H-amination/ipso-C-I-cyanation of iodoarenes: regiospecific synthesis of 2-aminobenzonitrile. Org Lett. https://doi.org/10.1021/acs.orglett.6b02113

    Article  PubMed  Google Scholar 

  113. Luo B, Gao JM, Lautens M (2016) Palladium-catalyzed norbornene-mediated tandem amination/cyanation reaction: a method for the synthesis of ortho-aminated benzonitriles. Org Lett. https://doi.org/10.1021/acs.orglett.6b02249

    Article  PubMed  Google Scholar 

  114. Whyte A, Olson ME, Lautens M (2018) Palladium-catalyzed, norbornene-mediated, ortho-amination ipso-amidation: sequential C–N bond formation. Org Lett. https://doi.org/10.1021/acs.orglett.7b03577

    Article  PubMed  Google Scholar 

  115. Fan L, Liu J, Bai L et al (2017) Rapid assembly of diversely functionalized spiroindenes by a three-component palladium-catalyzed C−H amination/phenol dearomatization domino reaction. Angew Chem. https://doi.org/10.1002/ange.201708310

    Article  Google Scholar 

  116. Wang J, Li R, Dong Z et al (2018) Complementary site-selectivity in arene functionalization enabled by overcoming the ortho constraint in palladium/norbornene catalysis. Nat Chem. https://doi.org/10.1038/s41557-018-0074-z

    Article  PubMed  PubMed Central  Google Scholar 

  117. Dong Z, Lu G, Wang J et al (2018) Modular ipso/ortho difunctionalization of aryl bromides via palladium/norbornene cooperative catalysis. J Am Chem Soc. https://doi.org/10.1021/jacs.8b04153

    Article  PubMed  PubMed Central  Google Scholar 

  118. Zhang BS, Li Y, An Y et al (2018) Carboxylate ligand-exchanged amination/C(sp3)-H arylation reaction via Pd/norbornene cooperative catalysis. ACS Catal. https://doi.org/10.1021/acscatal.8b04163

    Article  PubMed  PubMed Central  Google Scholar 

  119. Chen S, Wang P, Cheng HG et al (2019) Redox-neutral: ortho -C–H amination of pinacol arylborates via palladium(ii)/norbornene catalysis for aniline synthesis. Chem Sci. https://doi.org/10.1039/c9sc02759a

    Article  PubMed  PubMed Central  Google Scholar 

  120. Abel-Snape X, Whyte A, Lautens M (2020) Synthesis of aminated phenanthridinones via palladium/norbornene catalysis. Org Lett. https://doi.org/10.1021/acs.orglett.0c02850

    Article  PubMed  Google Scholar 

  121. An Y, Zhang BS, Zhang Z et al (2020) A carboxylate-assisted amination/unactivated C(sp2)-H arylation reaction via palladium/norbornene cooperative catalysis. Chem Commun 25:5

    Google Scholar 

  122. Chen Y, Lv W, Ba D et al (2020) Palladium-catalyzed chemoselective synthesis of 2-aminocinnamyl esters via sequential amination and olefination of aryl iodides. J Org Chem. https://doi.org/10.1021/acs.joc.0c01695

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zhang BS, Li Y, Gou XY et al (2020) DMAP and PivOH-promoted amination/allenization reaction. Chem Commun. https://doi.org/10.1039/d0cc03749d

    Article  Google Scholar 

  124. Wang CT, Li M, Ding YN et al (2021) Alkylation-terminated Catellani reactions by cyclobutanol C-C cleavage. Org Lett. https://doi.org/10.1021/acs.orglett.0c04018

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zhao S, Han S, Du G et al (2021) Acid-promoted expeditious syntheses of aminated dibenzosultams via palladium/norbornene cooperatively catalysed C−H amination/arylation. Adv Synth Catal. https://doi.org/10.1002/adsc.202001413

    Article  Google Scholar 

  126. Zheng N, Liu C, Ding YN et al (2020) Copper-catalyzed three-component redox-neutral ring opening of benzothiazoles to 1-amino-N-(2-(phenylthio)phenyl)methanimine. J Org Chem. https://doi.org/10.1021/acs.joc.9b03489

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Discipline of Pharmaceutical Sciences, College of Health Sciences, University of Kwa-Zulu Natal (UKZN), Durban, South Africa, for providing all the necessary facilities. R.K. gratefully acknowledges National Research Foundation-South Africa for funding this project (Grant No. 129247).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajshekhar Karpoormath.

Ethics declarations

Conflict of interest

The reported work is acknowledged/cited, with no potential conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohite, S.B., Bera, M., Kumar, V. et al. O-Benzoylhydroxylamines: A Versatile Electrophilic Aminating Reagent for Transition Metal-Catalyzed C–N Bond-Forming Reactions. Top Curr Chem (Z) 381, 4 (2023). https://doi.org/10.1007/s41061-022-00414-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41061-022-00414-5

Keywords

Navigation