Log in

Applications of Rhodium and Ruthenium Catalysts for CO Oxidation: an Overview

  • REVIEW
  • Published:
Polytechnica Aims and scope Submit manuscript

Abstract

The rhodium (Rh) and ruthenium (Ru) are very important catalytic materials in various oxidation reactions. It is the best monometallic catalyst for oxidation of carbon monoxide (CO) and practically used in residential catalytic converters. These catalysts are active for CO oxidation at a low temperature. The activity of Ru/Rh catalysts is strongly dependent on the surface area, pore volume and textural properties of designed catalysts. It could be used as an ideal candidate not only for automobile industry through the cross-coupling reactions but also for low-temperature catalytic oxidation of CO. The chemisorptions of CO over Ru/Rh catalysts and supported catalysts were studied in this review. These studies will provide the scientific basis for future design of Ru/Rh oxidation catalysts. Both Ru and Rh are minor metals and supply risk often increases the price. However, the performance improved and cost-reduced nanoparticles of Rh/Ru system are reviewed by this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adeyemo A, Hunter G, Dutta PK (2011) Interaction of CO with hydrous ruthenium oxide and development of a chemo resistive ambient CO sensor. Journal of Sensors and Actuators B 152:307–315

    Article  Google Scholar 

  • Air quality criteria for carbon monoxide. Washington, DC. US Environmental Protection Agency, Office of Research and Development, (publication no. EPA-600/B-90/045F) (1991)

  • Amin CM, Rathod PP, Goswami JJ (2012) Copper based catalytic converter. International Journal of Engineering Research & Technology 1:1–6

    Article  Google Scholar 

  • Ammendola P, Cammisa E, Chirone R, Lisi L, Ruoppolo G (2012) Effect of Sulphur on the performance of Rh-LaCoO3 based catalyst for tar conversion to syngas. Appl. Catal. B: Environmental 113–114:11–18

    Google Scholar 

  • Arena F, Chio RD, Filiciotto L, Trunfio G, Espro C, Palella A, Patti A, Spadaro L (2017) Probing the functionality of nanostructured MnCeOx catalysts in the carbon monoxide oxidation part II. Reaction mechanism and kinetic modeling. Appl Catal B Environ 218:803–809

    Article  Google Scholar 

  • Argyle MD, Bartholomew CH (2015) Heterogeneous catalyst deactivation and regeneration: a review. Catalysts 5:145–269

    Article  Google Scholar 

  • Automobile and carbon monoxide, U.S. Environmental protection agency office mobile sources. EPA400-F-92-005

  • Brewster TP, Ou WC, Tran JC, Goldberg KI, Hanson SI, Cundari TR, Heinekey DM (2014) Iridium, rhodium, and ruthenium catalysts for the “aldehyde− water shift” reaction. ACS Catal 4:3034–3038

    Article  Google Scholar 

  • Cai F, Shan S, Yang L, Chen B, Luo J, Zhong C (2015) CO oxidation on supported platinum group metal (PGM) based nanoalloys. SCIENCE CHINA Chem 58(1):14–28

    Article  Google Scholar 

  • Carenco S (2018) Describing inorganic nanoparticles in the context of surface reactivity and catalysis. Chem Commun 54(50):6719–6727

    Article  Google Scholar 

  • Chen W, Lin S (2015) Characterization of catalytic partial oxidation of methane with carbon dioxide utilization and excess enthalpy recovery. Journal of Applied energy 21:1–12

    Google Scholar 

  • Cominos V, Hessel V, Hofmann C, Kolb G, Zapf R, Ziogas A, Delsman ER, Schouten JC (2005) Selective oxidation of carbon monoxide in a hydrogen rich fuel cell feed using a catalyst coated microstructure reactor. Catal Today 110:140–153

    Article  Google Scholar 

  • S. Cotton 2013. Wilkinson’s catalyst (Chlorotrist(tripheny lphoshine) rehodium (I)) [RhCl(PPH3)3], The famous inorganic catalyst

  • Dey S, Dhal GC (2019) Catalytic conversion of carbon monoxide into carbon dioxide over spinel catalysts: an overview. Materials Science for Energy Technologies 2:575–588

    Article  Google Scholar 

  • S. Dey and G.C. Dhal 2020a. Ceria doped CuMnOx as carbon monoxide oxidation catalysts: Synthesis and their characterization Surfaces and Interfaces 100456

  • Dey S, Dhal GC (2020b) Synthesis of Hopcalite catalysts by various methods for improved catalytic conversion of carbon monoxide. Materials Science for Energy Technologies 3:377–389

    Article  Google Scholar 

  • Dey S, Dhal GC (2020c) The catalytic activity of cobalt nanoparticles for low-temperature oxidation of carbon monoxide. Materials Today Chemistry 14:100198

    Article  Google Scholar 

  • Dey S, Dhal GC, Mohan D, Prasad R (2017a) Characterization and activity of CuMnOx/γ-Al2O3 catalyst for oxidation of carbon monoxide. Materials Discovery 8:26–34

    Article  Google Scholar 

  • Dey S, Dhal GC, Mohan D, Prasad R (2017b) Copper based mixed oxide catalysts (CuMnCe, CuMnCo and CuCeZr) for the oxidation of CO at low temperature. Material Discovery 10:1–14

    Article  Google Scholar 

  • Dey S, Dhal GC, Mohan D, Prasad R (2017c) Effect of preparation conditions on the catalytic activity of CuMnOx catalysts for CO oxidation. Bulletin of Chemical Reaction Engineering & Catalysis 12(3):1–15

    Article  Google Scholar 

  • Dey S, Dhal GC, Mohan D, Prasad R (2017d) Kinetics of catalytic oxidation of carbon monoxide over CuMnAgOx catalyst. Materials Discovery 8:18–25

    Article  Google Scholar 

  • Dey S, Dhal GC, Mohan D, Prasad R (2018a) Low-temperature complete oxidation of CO over various manganese oxide catalysts. Atmospheric Pollution Research 9:755–763

    Article  Google Scholar 

  • Dey S, Dhal GC, Mohan D, Prasad R (2018b) Synthesis and characterization of AgCoO2 catalyst for oxidation of CO at a low temperature. Polyhedron 155:102–113

    Article  Google Scholar 

  • S. Dey, G.C. Dhal, D. Mohan and R. Prasad 2019. Synthesis of silver promoted CuMnOx catalyst for ambient temperature oxidation of carbon monoxide. Journal of science: advanced materials and devices https://doi.org/10.1016/j.jsamd.2019.01.008, 1-10

  • Dong RT, Wang HL, Zhang Q, Xu XT, Wang F, Li B (2015) Shape-controlled synthesis of Mn2O3 hollow structures and their catalytic properties. CrystEngComm 17:7406–7413

    Article  Google Scholar 

  • Dulaurent O, Nawdali M, Bourane A, Bianchi D (2000) Heat of adsorption of carbon monoxide on a Ru/Al2O3 catalyst using adsorption equilibrium conditions at high temperatures. Appl Catal A Gen 201:271–279

    Article  Google Scholar 

  • Edwin SG, Wesley N, Bilge CF, Gadi R, Sheng W, Hualong X, Laura P, Mercededes PB, Antonio SE, Ning Y, Shiju NR (2017) Plasma-assisted synthesis of monodispersed and robust ruthenium ultrafine nanocatalysts for organosilane oxidation and oxygen evolution reactions. CHEMCATCHEM Communications 9:4159–4163

    Article  Google Scholar 

  • Fajín JLC, Gomes JRB, Natalia M, Cordeiro DS (2015) Mechanistic study of carbon monoxide methanation over pure and rhodium or ruthenium-doped nickel catalysts. J Phys Chem C 119:16537–16551

    Article  Google Scholar 

  • Filot IAW, Shetty SG, Hensen EJM, Santen RA (2011) Size and topological effects of rhodium surfaces, clusters and nanoparticles on the dissociation of CO. J Phys Chem C 115:14204–14212

    Article  Google Scholar 

  • Fuchs S, Hahn T, Lintz HT (1994) The oxidation of carbon monoxide by oxygen over platinum, palladium and rhodium catalysts from 10−10 to 1 bar. Chem Eng Process 33:363–369

    Article  Google Scholar 

  • Fuentes S, Figueras F, Gomez R (1981) Deactivation by coking of rhodium catalysts of widely varying dispersion. J Catal 68:419–422

    Article  Google Scholar 

  • Galletti C, Fiorot S, Specchia S, Saracco G, Specchia V (2007) Activity of rhodium-based catalysts for CO preferential oxidation in H2-rich gases. Top Catal 45(1–4):15–19

    Article  Google Scholar 

  • Gao F, Wang Y, Cai Y, Goodman DW (2009) CO oxidation over Ru (0001) at near-atmospheric pressures: from chemisorbed oxygen to RuO2. Journal of Surface Science 603:1126–1134

    Article  Google Scholar 

  • Gao Y, **e K, Mi S, Liu N, Wang W, Huang W (2013) Preferential oxidation of CO in a H2-rich stream over multi walled carbon nanotubes confined Ru catalysts. Int J Hydrog Energy 38:16665–16676

    Article  Google Scholar 

  • Gawande MB, Monga Y, Zboril R, Sharma RK (2015) Silica-decorated magnetic nanocomposites for catalytic applications. Coord Chem Rev 288:118–143

    Article  Google Scholar 

  • Goerke O, Pfeifer P, Schubert K (2004) Water gas shift reaction and selective oxidation of CO in micro reactors. Appl Catal A Gen 263:11–18

    Article  Google Scholar 

  • Gong X, Liu Z, Raval R, Hu P (2004) A systematic study of CO oxidation on metals and metal oxides: density functional theory calculations. J Am Chem Soc 126(1):8–9

    Article  Google Scholar 

  • Goodman DW, Peden CHF (1986) CO oxidation over Rh and Ru: a comparatlve study. J Phys Chem 90:4839–4843

    Article  Google Scholar 

  • Goodman DW, Peden CHF, Chen MS (2007) CO oxidation on ruthenium: the nature of the active catalytic surface. Journal of Surface science 601:124–126

    Article  Google Scholar 

  • Grass ME, Zhang Y, Butcher DR, Park JY, Li Y, Bluhm H, Bratlie KM, Zhang T, Somorjai GA (2008) A reactive oxide overlayer on rhodium nanoparticles during CO oxidation and its size dependence studied by in situ ambient-pressure X-ray photoelectron spectroscopy. Angew Chem 47:9025–9028

    Article  Google Scholar 

  • Gustafson J, Westerstrom R, Balmes O, Resta A, Rijn R, Torrelles X, Herbschleb CT, Frenken JWM, Lundgren E (2010) Catalytic activity of the Rh surface oxide: CO oxidation over Rh(111) under realistic conditions. J Phys Chem 114:4580–4583

    Article  Google Scholar 

  • Gustafson KPJ, Shatskiy A, Verho O, Kärkäs MD, Schluschass B, Tai CW, Åkermark B, Bäckvall J, Johnston EV (2017) Water oxidation mediated by ruthenium oxide nanoparticles supported on siliceous mesocellular foam. Catal Sci Technol 7:293–299

    Article  Google Scholar 

  • Gustafson J, Balmes O, Zhang C, Shipilin M, Schaefer A, Hagman B, Merte LR, Martin NM, Carlsson P, Jankowski M, Crumlin EJ, Lundgren E (2018) The role of oxides in catalytic CO oxidation over rhodium and palladium. ACS Catal 8:4438–4445

    Article  Google Scholar 

  • Hebben N, Diehm C, Deutschmann O (2010) Catalytic partial oxidation of ethanol on alumina-supported rhodium catalysts: an experimental study. Appl Catal A Gen 388:225–231

    Article  Google Scholar 

  • Hulteberg PC, Brandin JGM, Silversand FA, Lundberg M (2005) Preferential oxidation of carbon monoxide on mounted and unmounted noble-metal catalysts in hydrogen-rich streams. Int J Hydrog Energy 30:1235–1242

    Article  Google Scholar 

  • Joo SH, Park JY, Renzas JR, Butcher DR, Huang W, Somorjai GA (2010) Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation. Nano Lett 10(7):2709–2713

    Article  Google Scholar 

  • Jung CR, Kundu A, Nam SW, Lee H (2007) Do** effect of precious metal on the activity of CuO-CeO2 catalyst for selective oxidation of CO. Appl Catal A Gen 331:112–120

    Article  Google Scholar 

  • Kalinkin AV, Pashis AV, Bukhtiyarov VI (2007) Reaction of CO oxidation on platinum, rhodium, a platinum–rhodium alloy, and a heterophase bimetallic platinum/rhodium surface. Kinet Catal 48(2):198–304

    Article  Google Scholar 

  • Kawabata H, Koda Y, Sumida H, Shigetsu M, Takami A, Inumaru K (2014) Self-regeneration of three-way catalyst rhodium supported on La-containing ZrO2 in an oxidative atmosphere. Catalysis Science & Technology 4(3):697–707

    Article  Google Scholar 

  • Kim S, Qadir K, ** S, Reddy AS, Seo B, Mun BS, Joo SH, Park JY (2012) Trend of catalytic activity of CO oxidation on Rh and Ru nanoparticles: role of surface oxide. Catal Today 185:131–137

    Article  Google Scholar 

  • Kim SM, Qadir K, Seo B, Jeong HY, Joo SH, Terasaki O, Park JY (2013) Nature of Rh oxide on Rh nanoparticles and its effect on the catalytic activity of CO oxidation. Catal Lett 143:1153–1161

    Article  Google Scholar 

  • Kiss JT, Gonzalez RD (1984) Catalytic oxidation of carbon monoxide over rhodium/silicon dioxide. An in situ infrared and kinetic study. J Phys Chem 88(5):898–904

    Article  Google Scholar 

  • Lara P, Philippot K, Chaudret B (2013) Organometallic ruthenium nanoparticles: a comparative study of the influence of the stabilizer on their characteristics and reactivity. ChemCatChem 5:28–45

    Article  Google Scholar 

  • Lee MJ, Kang JS, Kang YS, Chung DY, Shin H, Ahn CY, Park S, Kim M, Kim S, Lee K, Sung Y (2016) Understanding the bifunctional effect for removal of CO poisoning: blend of platinum nanocatalyst and hydrous ruthenium oxide as a model system. ACS Catal:1–35

  • Ligthart DAJM, Santen RA, Hensen EJM (2011) Supported rhodium oxide nanoparticles as highly active CO oxidation catalysts. Angew Chem 123(23):5418–5422

    Article  Google Scholar 

  • Lin M, Dai L, Gu J, Kang L, Wang Y, Si R, Zhao Z, Liu W, Fu X, Sun L, Zhang Y, Yan C (2017a) Moderate oxidation levels of Ru nanoparticles enhance molecular oxygen activation for cross-dehydrogenative-coupling reactions via single electron transfer. RSC Adv 7:33078–33085

    Article  Google Scholar 

  • Lin M, Kang L, Gu J, Dai L, Tang S, Zhang T, Wang Y, Li L, Zheng X, Zhu W, Si R, Fu X, Sun L, Zhang Y, Yan C (2017b) Heterogeneous synergistic catalysis by Ru-RuOx nanoparticles for se–se bond activation. Nano Res 10(3):922–932

    Article  Google Scholar 

  • Lopez T, Lopez-Gaona A, Gomez R (1990) Deactivation of ruthenium catalysts prepared by the sol-gel method in reactions of benzene hydrogenation and n-pentane hydrogenolysis. Langmuir 6:1343–1346

    Article  Google Scholar 

  • Nehasil V, Stara I, Matolin V (1996) Size effect study of carbon monoxide oxidation by Rh surfaces. Journal of surface science 354:305–309

    Article  Google Scholar 

  • Nishibayashi Y, Takei I, Hidai M (1997) Synthesis, structures, and reactivities of rhodium and ruthenium complexes with a novel chiral cyclopentadienyl-ferrocenyl diphenyl phosphine bidentate ligand. Organometallics 16:3091–3093

    Article  Google Scholar 

  • Olveira S, Forster SP, Seeger S (2014) Nanocatalysis: academic discipline and industrial realities. Journal of Nanotechnology:1–19

  • Peden CHF, Goodman DW (1985) Kinetics of CO oxidation over Ru(0001). J Phys Chem 90:1360–1365

    Article  Google Scholar 

  • Piccolo L, Li ZY, Demiroglu L, Moyon F, Konuspayeva Z, Berhault G, Afanasiev P, Lefebvre W, Yuan J, Johnston RL (2016) Understanding and controlling the structure and segregation behaviour of AuRh nanocatalysts. Sci Rep 6:35226

    Article  Google Scholar 

  • Qadir K, Joo SH, Mun BS, Butcher DR, Renzas JR, Aksoy F, Liu Z, Somorjai JA, Park JY (2012) Intrinsic relation between catalytic activity of CO oxidation on Ru nanoparticles and Ru oxides uncovered with ambient pressure XPS. Nano Lett 12(11):5761–5768

    Article  Google Scholar 

  • Qadir K, Kim SM, Seo H, Mun BS, Akgul FA, Liu Z, Park JY (2013) Deactivation of Ru catalysts under catalytic CO oxidation by formation of bulk Ru oxide probed with ambient pressure XPS. J Phys Chem C 117(25):13108–13113

    Article  Google Scholar 

  • Renzas JR (2010) Rhodium catalysts in the oxidation of CO by O2 and NO: shape, composition, and hot electron generation, Ph.D. thesis, chemistry department. University of California, Berkeley

    Google Scholar 

  • Rong Y, Hurlburt TJ, Sabyrov K, Alayoglu S, Somorjai GA (2016) Molecular catalysis science: perspective on unifying the fields of catalysis. PNAS 113(19):5159–5166

    Article  Google Scholar 

  • Saadatjou N, Jafari A, Sahebdelfar S (2014) Ruthenium nanocatalysts for ammonia synthesis: a review. Chem Eng Commun. https://doi.org/10.1080/00986445.2014.9239951-11

  • Singh P, Prasad R (2014) Catalytic abatement of cold start vehicular CO emissions. Catal Ind 6(2):122–127

    Article  Google Scholar 

  • Snytnikov PV, Sobyanin VA, Belyaev VD, Tsyrulnikov PG, Shitova NB, Shlyapin DA (2003) Selective oxidation of carbon monoxide in excess hydrogen over Pt-, Ru- and Pd- supported catalysts. Applied Catalysis A: General 239:149–156

    Article  Google Scholar 

  • Solsona B, Hutchings GJ, Garcia T, Taylor SH (2004) Improvement of the catalytic performance of CuMnOx catalysts for CO oxidation by the addition of au. New J Chem 28:708–711

    Article  Google Scholar 

  • Song Z, Cai T, Hanson JC, Rodriguez JA, Hrbek J (2004) Structure and reactivity of Ru nanoparticles supported on modified graphite surfaces: a study of the model catalysts for ammonia synthesis. J Am Chem Soc 126:8576–8584

    Article  Google Scholar 

  • Teoh WY, Doronkin DE, Beh GK, Dreyer JAH, Grunwaldt J (2015) Methanation of carbon monoxide over promoted flame-synthesized cobalt clusters stabilized in zirconia matrix. J Catal 326:182–193

    Article  Google Scholar 

  • Toyoshima R, Yoshida M, Monya Y, Suzuki K, Amemiya K, Mase K, Mun SB, Kondoh H (2013) In situ photoemission observation of catalytic CO oxidation reaction on Pd(110) under near-ambient pressure conditions: evidence for the Langmuir−Hinshelwood mechanism. J Phys Chem 117:20617–20624

    Google Scholar 

  • Walker NP, Miller BK, Crozier PA (2015) Analysis of surface structures in Ru nanocatalysts. Microsc Microanal 21:1657–1658. https://doi.org/10.1017/S143192761500906X

    Article  Google Scholar 

  • Wong S, Hsiao H, Lo K (2014) Improving temperature uniformity and performance of CO preferential oxidation for hydrogen rich reformate with a heat pipe. Int J Hydrog Energy 39:6492–6496

    Article  Google Scholar 

  • Zhang Y, Ligthart DAJM, Liu P, Gao L, Verhoeven TMWGM, Hensen EJM (2014) Size dependence of photo catalytic oxidation reactions of Rh nanoparticles dispersed on (Ga1-XZnX) (N1-XOX) support. Chin J Catal 35:1944–1954

    Article  Google Scholar 

  • Zhao Z, Meng C, Li P, Zhu W, Wang Q, Ma Y, Shen G, Bai L, He H, He D, Yu D, He J, Xu B, Tian Y (2014) Carbon coated face-centered cubic Ru–C nanoalloys. Nanoscale 6:10370–10376

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express his gratitude to the Department of Civil engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, India; for their guidance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhashish Dey.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Dhal, G.C. Applications of Rhodium and Ruthenium Catalysts for CO Oxidation: an Overview. Polytechnica 3, 26–42 (2020). https://doi.org/10.1007/s41050-020-00023-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41050-020-00023-5

Keywords

Navigation