Log in

Free Vibration Investigation of Single-Phase Porous FG Sandwich Cylindrical Shells: Analytical, Numerical and Experimental Study

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

This paper offers new analytical, numerical, and experimental methods for nonlinear free vibration analysis of single-phase functionally graded (FG) porous sandwich panels that are simply supported with cylindrical shell panels using the first-order shear deflection theory. This innovative sandwich shell comprises a single porous polymer core and two uniform skins that have not been previously considered into the vibration analysis, making it highly applicable in diverse fields, such as aircraft structures, biomedical engineering, and defense technology. The properties of the core metal are assumed to depend on the porosity and grade in the direction of thickness, with a power-law distribution concerning the volume fractions of the constituents. This study involved performing free vibration experiments on three-dimensional (3D printed) FGM shells. To validate the analytical solution, a numerical study was carried out employing modal analysis and finite element analysis with the help of ANSYS-2021-R1 software. The objective of this research is to study the impact of various critical factors, including power-law index, porous ratio, FG core thickness, skin thickness, different boundary conditions, and radius of curvature on the natural frequencies and transient deflection response. The findings manifested that the frequency parameter of sandwich shell is positively correlated with both the number of constraints in the boundary conditions and the porosity factor. It is observed that there is an acceptable level of agreement between the suggested analytical procedure and the numerical findings, with a maximum error difference of only 6.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\({A}_{ij},{B}_{ij},{D}_{ij}\) :

Coefficients described in the appendix (N/m2)

\({A}_{x},{A}_{y}\) :

Cross section areas of the stiffeners (m2)

\({I}_{i}\) :

Coefficients described in the appendix (Kg/m3)

\({I}_{ij}\) :

Coefficients explained in the appendix (N/m2)

\({K}_{\mathrm{s}}\) :

Shear correction factor (Unitless)

\({M}_{x}, {M}_{y}, {M}_{xy}\) :

Moment’s resultants (N.m.)

\({N}_{x}, {N}_{y}, {N}_{xy}\) :

Forces resultants (Newton)

\({Q}_{x}, {Q}_{y}\) :

The transverse force resultants (Newton)

\({T}_{ij}, {t}_{ij},{n}_{i}, {a}_{i}\) :

Coefficients described in the appendix

\({Z}_{x},{Z}_{y}\) :

Eccentricities stiffened (m)

a :

Panel length (m)

b :

Span length (M)

H :

Panel thickness (M)

k :

Power-law index (Unitless)

L :

Lagrangian function (Joule)

m :

Metal

m :

Axial wave number (Unitless)

n :

Circumferential wave number (Unitless)

R :

Panel radius (m)

U :

Strain energy (Joule)

u, v :

Displacement components along the x, y directions (m)

w :

The deflection of the panel (m)

W :

Work done (Joule)

x, y, z :

Panel coordinates (m)

\(Q\) :

Excitation force (N/m2)

\(V\) :

Kinetic energy (Joule)

\(f\) :

The stress function

\(q\) :

Uniformly distributed pressure of intensity (Pascal)

\({\gamma }_{xy}\) :

The shear strain component (Unitless)

\({\gamma }_{xz}, {\gamma }_{yz}\) :

The components of transverse shear strains in the planes \(\left(xz,yz\right)\)

\({\varepsilon }_{x}, {\varepsilon }_{y}\) :

The normal strains component (Unitless)

\({\omega }_{mn}\) :

Linear fundamental frequency (Rad/s)

\({\phi }_{x},{\phi }_{y}\) :

Slopes of the transverse normal around \(\left(y\right)\) and \(\left(x\right)\) axes

\(\Omega \) :

Rotational velocity (Rad/s)

\(\beta \) :

The factor of porosity (Unitless)

\(\delta \) :

Mathematical operation called variation

\(\nu \) :

Poisson's ratio (Unitless)

\(\rho \) :

Mass density (Kg/m3)

\(\sigma \) :

Stress component (N/m2)

\(\tau \) :

Shear stress component (N/m2)

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mouthanna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

None.

Appendix

Appendix

$$ \begin{gathered} I_{10} = \frac{{E_{1} }}{{1 - \upsilon^{2} }},I_{20} = \frac{{\upsilon E_{1} }}{{1 - \upsilon^{2} }},I_{30} = \frac{{E_{1} }}{{2\left( {1 + \upsilon } \right)}}, \hfill \\ I_{11} = \frac{{E_{2} }}{{1 - \upsilon^{2} }},I_{21} = \frac{{\upsilon E_{2} }}{{1 - \upsilon^{2} }},I_{31} = \frac{{E_{2} }}{{2\left( {1 + \upsilon } \right)}}, \hfill \\ I_{12} = \frac{{E_{3} }}{{1 - \upsilon^{2} }},I_{22} = \frac{{\upsilon E_{3} }}{{1 - \upsilon^{2} }},I_{32} = \frac{{E_{3} }}{{2\left( {1 + \upsilon } \right)}}, \hfill \\ \end{gathered} $$
(32)
$$ A_{11} = \frac{{I_{10} }}{\Delta },A_{22} = \frac{{I_{10} }}{\Delta },A_{12} = \frac{{I_{20} }}{\Delta },A_{66} = \frac{1}{{I_{30} }}, $$
(33)
$$ \Delta = I_{10}^{2} - I_{20}^{2} ,B_{11} = A_{22} I_{11} - A_{12} I_{21} ,B_{22} = A_{11} I_{11} - A_{12} I_{21} , $$
(34)
$$ \begin{gathered} B_{12} = A_{22} I_{21} - A_{12} A_{12} , \hfill \\ B_{21} = A_{11} I_{21} - A_{12} I_{11} , \hfill \\ B_{66} = \frac{{I_{31} }}{{I_{30} }}, \hfill \\ \end{gathered} $$
(35)
$$ \begin{gathered} D_{11} = I_{12} - B_{11} B_{12} - I_{21} B_{21} , \hfill \\ D_{22} = I_{22} - B_{22} I_{11} - I_{21} B_{12} , \hfill \\ D_{12} = I_{22} - B_{12} I_{11} - I_{21} B_{22} , \hfill \\ D_{21} = I_{22} - B_{21} I_{11} - I_{21} B_{11} , \hfill \\ D_{66} = I_{32} - I_{31} B_{66} , \hfill \\ \end{gathered} $$
(36)
$$ \begin{gathered} {\rm T}_{11} \left( w \right) = K_{s} I_{30} \frac{{\partial^{2} w}}{{\partial x^{2} }} + K_{s} I_{30} \frac{{\partial^{2} w}}{{\partial y^{2} }}, \hfill \\ {\rm T}_{12} \left( {\phi_{x} } \right) = K_{s} I_{30} \frac{{\partial \phi_{x} }}{\partial x}, \hfill \\ {\rm T}_{13} \left( {\phi_{y} } \right) = K_{s} I_{30} \frac{{\partial \phi_{y} }}{\partial y}, \hfill \\ {\rm T}_{21} \left( w \right) = - K_{s} I_{30} \frac{\partial w}{{\partial x}}, \hfill \\ {\rm T}_{22} \left( {\phi_{x} } \right) = D_{11} \frac{{\partial^{2} \phi_{x} }}{{\partial x^{2} }} + D_{66} \frac{{\partial^{2} \phi_{y} }}{{\partial y^{2} }} - K_{s} I_{30} \phi_{x} , \hfill \\ {\rm T}_{23} \left( {\phi_{y} } \right) = \left( {D_{12} + D_{66} } \right)\frac{{\partial^{2} \phi_{y} }}{\partial x\partial y}, \hfill \\ {\rm T}_{33} \left( {\phi_{y} } \right) = D_{22} \frac{{\partial^{2} \phi_{y} }}{{\partial y^{2} }} + D_{66} \frac{{\partial^{2} \phi_{y} }}{{\partial x^{2} }} - K_{s} I_{30} \phi_{y} , \hfill \\ \end{gathered} $$
(37)
$$ \begin{gathered} R_{1} \left( {w,f} \right) = \frac{{\partial^{2} f}}{{\partial x^{2} }}\frac{{\partial^{2} w}}{{\partial x^{2} }} - 2\frac{{\partial^{2} f}}{\partial x\partial y}\frac{{\partial^{2} w}}{\partial x\partial y} + \frac{{\partial^{2} f}}{{\partial x^{2} }}\frac{{\partial^{2} w}}{{\partial y^{2} }} + \frac{1}{R}\frac{{\partial^{2} f}}{{\partial x^{2} }}, \hfill \\ R_{2} \left( f \right) = B_{21} \frac{{\partial^{3} f}}{{\partial x^{3} }} + \left( {B_{11} - B_{66} } \right)\frac{{\partial^{3} f}}{{\partial x\partial y^{2} }}, \hfill \\ R_{3} \left( f \right) = B_{12} \frac{{\partial^{3} f}}{{\partial y^{3} }} + \left( {B_{22} - B_{66} } \right)\frac{{\partial^{3} f}}{{\partial x^{2} \partial y}}, \hfill \\ \end{gathered} $$
(38)
$$ \begin{gathered} t_{11} = - \frac{{\lambda_{m}^{4} }}{{L_{26} R^{2} }},t_{12} = - \lambda_{m}^{2} \frac{{L_{27} }}{{L_{26} R}} - K_{s} I_{30} \lambda_{m} ,t_{13} = - \lambda_{m}^{2} \frac{{L_{28} }}{{L_{26} R}} - K_{s} I_{30} \delta_{n} , \hfill \\ t_{14} = \left( {L_{12} + L_{13} } \right) - \frac{{L_{25} L_{27} }}{{L_{26} }} - \frac{{L_{27} L_{29} }}{{L_{26} }},t_{15} = \left( {L_{14} + L_{15} } \right) - \frac{{L_{25} L_{28} }}{{L_{26} }} - \frac{{L_{28} L_{29} }}{{L_{26} }}, \hfill \\ t_{16} = \left( {L_{23} + L_{24} } \right)\Phi_{1} - K_{s} I_{30} \lambda_{m}^{2} - K_{s} I_{30} \delta_{n}^{2} ,t_{17} = \left( {L_{16} + L_{17} } \right) - \frac{{L_{25} \lambda_{m}^{2} }}{{L_{26} R}} - \frac{{L_{29} \lambda_{m}^{2} }}{{L_{26} R}} - L_{31} , \hfill \\ t_{18} = - \left( {L_{18} + L_{19} } \right) - \frac{1}{16}\left( {\frac{{\lambda_{m}^{2} }}{{A_{22} }} + \frac{{\delta_{n}^{2} }}{{A_{11} }}} \right),t_{21} = - B_{21} \frac{1}{S}\frac{{\lambda_{m}^{2} }}{R}\lambda_{m}^{3} - \left( {B_{11} - B_{66} } \right)\frac{1}{S}\frac{{\lambda_{m}^{2} }}{R}\lambda_{m} \delta_{n}^{2} , \hfill \\ t_{22} = - D_{11} \lambda_{m}^{2} - D_{66} \delta_{n}^{2} - K_{s} I_{30} - B_{21} \frac{\zeta }{S}\lambda_{m}^{3} - \left( {B_{11} - B_{66} } \right)\frac{\zeta }{S}\lambda_{m} \delta_{n}^{2} , \hfill \\ t_{23} = - \left( {D_{12} + D_{66} } \right)\lambda_{m} \delta_{n} - B_{21} \frac{\Psi }{S}\lambda_{m}^{3} - \left( {B_{11} - B_{66} } \right)\frac{\Psi }{S}\lambda_{m} \delta_{n}^{2} , \hfill \\ t_{31} = - B_{12} \frac{1}{S}\frac{{\lambda_{m}^{2} }}{R}\delta_{n}^{3} - \left( {B_{22} - B_{66} } \right)\frac{1}{S}\frac{{\lambda_{m}^{2} }}{R}\delta_{n} \lambda_{m}^{2} , \hfill \\ t_{32} = - \left( {D_{21} + D_{66} } \right)\lambda_{m} \delta_{n} - B_{12} \frac{\zeta }{S}\delta_{n}^{3} - \left( {B_{22} - B_{66} } \right)\frac{\zeta }{S}\lambda_{m}^{2} \delta_{n} , \hfill \\ t_{33} = - D_{22} \delta_{n}^{2} - D_{66} \lambda_{m}^{2} - K_{s} I_{30} - B_{12} \frac{\Psi }{S}\delta_{n}^{3} - \left( {B_{22} - B_{66} } \right)\frac{\Psi }{S}\lambda_{m}^{2} \delta_{n} , \hfill \\ \end{gathered} $$
(39)
$$ \begin{gathered} n_{1} = - K_{s} I_{30} \lambda_{m} ,n_{2} = - \frac{8}{3}\frac{{B_{21} }}{{A_{11} }}\frac{{\delta_{n} }}{ab}, \hfill \\ n_{3} = - K_{s} I_{30} \delta_{n} ,n_{4} = - \frac{8}{3}\frac{{B_{12} }}{{A_{22} }}\frac{{\lambda_{m} }}{ab}, \hfill \\ \end{gathered} $$
(40)
$$ \tilde{\rho }_{1} = \left( {{\rm I}_{2} - \frac{{{\rm I}_{1}^{2} }}{{{\rm I}_{0} }}} \right) $$
(41)
$$ \zeta = B_{21} \lambda_{m}^{3} + \left( {B_{11} - B_{66} } \right)\lambda_{m} \delta_{n}^{2} , $$
(42)
$$ \Psi = B_{12} \delta_{n}^{3} + \left( {B_{22} - B_{66} } \right)\lambda_{m}^{2} \delta_{n} , $$
(43)
$$ S = A_{11} \lambda_{m}^{4} + A_{22} \delta_{n}^{4} + \left( {A_{66} - 2A_{12} } \right)\lambda_{m}^{2} \delta_{n}^{2} , $$
(44)
$$ \begin{gathered} a_{1} = t_{11} + t_{12} \frac{{t_{23} t_{31} - t_{21} t_{33} }}{{t_{22} t_{33} - t_{32} t_{23} }} + t_{13} \frac{{t_{32} t_{21} - t_{22} t_{31} }}{{t_{22} t_{33} - t_{32} t_{23} }}, \hfill \\ a_{2} = t_{12} \frac{{n_{3} t_{23} - n_{1} t_{33} }}{{t_{22} t_{33} - t_{32} t_{23} }} + t_{13} \frac{{n_{1} t_{32} - n_{3} t_{22} }}{{t_{22} t_{33} - t_{32} t_{23} }} + t_{16} , \hfill \\ a_{3} = t_{14} \frac{{t_{23} t_{31} - t_{21} t_{33} }}{{t_{22} t_{33} - t_{32} t_{23} }} + t_{15} \frac{{t_{32} t_{21} - t_{22} t_{31} }}{{t_{22} t_{33} - t_{32} t_{23} }}, \hfill \\ a_{4} = t_{12} \frac{{n_{4} t_{23} - n_{2} t_{33} }}{{t_{22} t_{33} - t_{32} t_{23} }} + t_{13} \frac{{n_{2} t_{32} - n_{4} t_{22} }}{{t_{22} t_{33} - t_{32} t_{23} }}, \hfill \\ a_{5} = t_{14} \frac{{n_{4} t_{23} - n_{2} t_{33} }}{{t_{22} t_{33} - t_{32} t_{23} }} + t_{15} \frac{{n_{2} t_{32} - n_{4} t_{22} }}{{t_{22} t_{33} - t_{32} t_{23} }}, \hfill \\ a_{6} = t_{14} \frac{{n_{3} t_{23} - n_{1} t_{33} }}{{t_{22} t_{33} - t_{32} t_{23} }} + t_{15} \frac{{n_{1} t_{32} - n_{3} t_{22} }}{{t_{22} t_{33} - t_{32} t_{23} }}, \hfill \\ \end{gathered} $$
(45)
$$ \begin{gathered} L_{11} = \left( {A_{11} A_{22} - A_{12}^{2} } \right),L_{12} = \frac{{4\lambda_{m}^{2} \left( {B_{21} A_{12} + A_{11} B_{11} } \right)}}{{\delta_{n} abL_{11} }},L_{13} = \frac{{4\delta_{n} \left( {B_{11} A_{12} + A_{11} A_{22} B_{21} } \right)}}{{abL_{11} }}, \hfill \\ L_{14} = \frac{{4\lambda_{m} \left( {B_{22} A_{12} + A_{11} B_{12} } \right)}}{{abL_{11} }},L_{15} = \frac{{4\delta_{n}^{2} \left( {B_{12} A_{12} + A_{22} B_{22} } \right)}}{{\lambda_{m} abL_{11} }},L_{16} = \frac{{4\lambda_{m} A_{12} }}{{\delta_{n} RL_{11} }},L_{17} = \frac{{4\delta_{n} A_{22} }}{{\lambda_{m} RL_{11} }}, \hfill \\ L_{18} = \frac{{\lambda_{m}^{3} \delta_{n} \left( {\delta_{n}^{2} A_{12} + \lambda_{m}^{2} A_{22} } \right)}}{{8abL_{11} }},L_{19} = \frac{{\delta_{n}^{3} \lambda_{m} \left( {\lambda_{m}^{2} A_{12} + \delta_{n}^{2} A_{22} } \right)}}{{8abL_{11} }},L_{21} = \frac{{\lambda_{m}^{3} \delta_{n} \left( {\delta_{n}^{2} A_{12} + \lambda_{m}^{2} A_{11} } \right)}}{{4abL_{11} }}, \hfill \\ L_{22} = \frac{{\lambda_{m} \delta_{n}^{3} \left( {\lambda_{m}^{2} A_{12} + \delta_{n}^{2} A_{22} } \right)}}{{4abL_{11} }},L_{25} = \frac{{8\lambda_{m} \delta_{n} }}{ab}, \hfill \\ L_{26} = A_{11} \lambda_{m}^{4} + A_{22} \delta_{n}^{4} + \left( {A_{66} - 2A_{12} } \right)\lambda_{m}^{2} \delta_{n}^{2} ,L_{27} = B_{21} \lambda_{m}^{3} + \left( {B_{11} - B_{66} } \right)\lambda_{m} \delta_{n}^{2} , \hfill \\ L_{28} = B_{12} \delta_{n}^{3} + \left( {B_{22} - B_{66} } \right)\lambda_{m}^{2} \delta_{n} ,L_{29} = \frac{{16\lambda_{m}^{2} \delta_{n}^{2} }}{{3mn\pi^{2} }},L_{31} = \frac{{\delta_{n}^{2} }}{{3A_{11} mn\pi^{2} R}},L_{32} = \frac{16}{{mn\pi^{2} }}, \hfill \\ \end{gathered} $$
(46)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouthanna, A., Bakhy, S.H., Al-Waily, M. et al. Free Vibration Investigation of Single-Phase Porous FG Sandwich Cylindrical Shells: Analytical, Numerical and Experimental Study. Iran J Sci Technol Trans Mech Eng (2023). https://doi.org/10.1007/s40997-023-00700-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40997-023-00700-7

Keywords

Navigation