Log in

Material Characterization of Glass/Siloxane Interface in Composite Materials

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this paper, elastic modulus and critical strain energy release rate (GIc) of the interface region in glass/siloxane are characterized using the molecular dynamics method. In glass/epoxy composites, chemical bonding between polymeric coatings (siloxane) and fiber represents the interface region. Many investigations only considered the van der Waals forces for interface characterization. However, we apply covalent bonds along with van der Waals and electrostatic forces as influential forces to simulate the mechanical behavior of this region. The energy method is applied to characterize the interface properties, including GIc and elastic modulus. These properties are extracted from the variation of interface energy and bond breakage during the interface separation. To verify the results, we compare the elastic modulus of the glass/siloxane layer from the component elements with the results extracted from the constant strain method. Also, it is shown that the obtained results are in good agreement with the atomic force microscopy (AFM) predictions for elastic modulus at the interface of glass/epoxy composites and the available GIc in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. Carbon Nano Tube.

  2. Cutoff distance is the distance beyond which the atoms' interactions are disregarded.

  3. The glass where hydrogen atoms occupy the empty valences on its surface.

References

  • Akovali G (1993) The interfacial interactions in polymeric composites. Springer, Dordrecht, pp 169–199

    Google Scholar 

  • Alizadeh Sahraei A, Mokarizadeh AH, George D, Rodrigue D, Baniassadiac M, Foroutan M (2019) Insights into interphase thickness characterization for graphene/epoxy nanocomposites: a molecular dynamics simulation. Phys Chem Chem Phys 21(36):19890–19903

    Google Scholar 

  • Anjana R, Sharma S, Bansal A (2016) Molecular dynamics simulation of carbon nanotube reinforced polyethylene composites. J Compos Mater, pp 1–15

  • Barry A (2014) Silane coupling agents: connecting across boundaries. Gelest Inc, Morrisville

    Google Scholar 

  • Buyl F, Kretschmer A (2008) Understanding hydrolysis and condensation kinetics of γ-Glycidoxypropyltrimethoxysilane. J Adhes 84(2):125–142

    Google Scholar 

  • Chowdhury CS, Gillespie JW Jr (2017) Silica: silane coupling agent interphase properties using molecular dynamics simulations. J Mater Sci 52:12981–12998

    Google Scholar 

  • Chowdhury CS, Prosser R, Sirk WT et al (2021) Glass fiber-epoxy interactions in the presence of silane: a molecular dynamics study. Appl Surf Sci 542:148738

    Google Scholar 

  • DiBenedetto AT (2001) Tailoring of interfaces in glass fiber reinforced polymer composites: a review. Mater Sci Eng A 302:74–82

    Google Scholar 

  • Dri LF, Wu X, Moon JR, Martini A et al (2015) Evaluation of reactive force fields for prediction of the thermo-mechanical properties of cellulose Iβ. Comput Mater Sci 109:330–340

    Google Scholar 

  • Dwight DW (2000) Glass fibre reinforcements. In: Kelly A, Zweben C (eds) Comprehensive composite materials. Elsevier, Amsterdam

    Google Scholar 

  • Faraji LS (2014) Nanoscale carbon fiber-matrix interphase characterization with Atomic Force Microscopy [dissertation]. Oklahoma State University, Oklahoma

    Google Scholar 

  • Gao SL, Mader E (2002) Characterization of interphase nanoscale property variations in glass fiber reinforced polypropylene and epoxy resin composites. Composite Part a 33:559–576

    Google Scholar 

  • Gorowara RL (2002) Interphase formation and environmental degradation in glass/vinyl ester composites [desertion]. University of Delaware, Newark

    Google Scholar 

  • Herasati S, Zhang LC, Ruan HH (2014) A new method for characterizing the interphase regions of carbon nanotube composites. Int J Solids Struct 51:1781–1791

    Google Scholar 

  • Huang S, Fu Q, Yan L et al (2021) Characterization of interfacial properties between fiber and polymer matrix in composite materials-a critical review. J Mater Res Technol 13:1441–1484

    Google Scholar 

  • Izadi R, Nayebi A, Ghavanloo E (2021) Combined molecular dynamics–micromechanics methods to predict Young’s modulus of fullerene-reinforced polymer composites. Eur Phys J 136:816

    Google Scholar 

  • Jesson DA, Watts JF (2012) The interface and interphase in polymer matrix composites: effect on mechanical properties and methods for identification. Polym Rev 52(3–4):321–354

    Google Scholar 

  • Ji XL, **g JK, Jiang W, Jiang BZ (2002) Tensile modulus of polymer nanocomposites. Polym Eng Sci 42:983–993

    Google Scholar 

  • Jiang LY, Huanga Y, Jiang H et al (2006) A cohesive law for carbon nanotube/polymer interfaces based on the van der Waals force. J Mech Phys Solids 54(11):2436–2452

    Google Scholar 

  • Kelly A, Zweben C (2000) Comprehensive composite materials: Fiber reinforcements and general theory of composites. Elsevier, Amsterdam

    Google Scholar 

  • Kumar P, Chandra R, Singh SP (2010) Interphase effect on fiber-reinforced polymer composites. Compos Interfaces 17:15–35

    Google Scholar 

  • Liu YJ, Nishimura N, Qian D et al (2008) A boundary element method for the analysis of CNT/polymer composites with a cohesive interface model based on molecular dynamics. Eng Anal Bound Elem 32(4):299–308

    Google Scholar 

  • Miracle BD, Donaldson LS (2001) Composites: glass fibers. ASM International, Ohio

    Google Scholar 

  • Monteferrante M, Succi S, Pisignano D, Lauricella M (2022) Simulating polymerization by Boltzmann inversion force field approach and dynamical nonequilibrium reactive molecular dynamics. Polymers 14(21):4529

    Google Scholar 

  • Morse PM (1929) Diatomic molecules according to the wave mechanics. II. Vibrational Levels. Phys Rev 34:57–64

    Google Scholar 

  • Materials Studio user’s manual Ver.17.1.0.48 (2017) Accelrys Inc., San Diego

  • Namilae S, Chandra N (2005) Multiscale model to study the effect of interfaces in carbon nanotube-based composites. J Eng Mater Technol 127:222–232

    Google Scholar 

  • Nose SA (1984) Molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52:255–268

    Google Scholar 

  • Penta KN, DanduVeera PR, Babu SV (2011) Role of poly (diallyldimethylammonium chloride) in selective polishing of polysilicon over silicon dioxide and silicon nitride films. Langmuir 27(7):3502–3510

    Google Scholar 

  • Pukanszky B (1990) Influence of interface interaction on the ultimate tensile properties of polymer composites. Composites 21:255–262

    Google Scholar 

  • Qi Y, Jiang D, Ju S et al (2019) Determining the interphase thickness and properties in carbon fiber reinforced fast and conventional curing epoxy matrix composites using peak force atomic force microscopy. Compos Sci Technol 184:1078770

    Google Scholar 

  • Rocha IBCM, Raijmaekers S, Nijssen RPL et al (2017) Hygrothermal ageing behavior of a glass/epoxy composite used in wind turbine blades. J Compos Struct 174:110–122

    Google Scholar 

  • Saber M, Hosseini-Toudeshky H (2023a) Interphase characterization of glass/epoxy composite using peridynamic method and micro tensile test. Compos Interfaces. https://doi.org/10.1080/09276440.2023.2179237

    Article  Google Scholar 

  • Saber M, Hosseini-Toudeshky H (2023b) Interphase elastic modulus characterization in glass/epoxy composite using combined peridynamics and experimental method. J Reinf Plast Compos. https://doi.org/10.1177/07316844231155091

    Article  Google Scholar 

  • Shokrieh MM, Rafiee R (2010) On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region. Compos Struct 92:647–652

    Google Scholar 

  • Srivastava A, Kumar DA (2017) continuum model to study interphase effects on elastic properties of CNT/GS-nanocomposite. Mater Res Express 4:025036

    Google Scholar 

  • Sun H (1998) COMPASS: an ab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. J Phys Chem 102:7338–7364

    Google Scholar 

  • Swain RE, Reifsnider KL, Jayaraman K, El-Zein M (1990) Interface/interphase concepts in composite material systems. J Thermoplast Compos Mater 3(1):13–23

    Google Scholar 

  • Tack LJ, Ford MD (2008) Thermodynamic and mechanical properties of epoxy resin DGEBF cross linked with DETDA by molecular dynamics. J Mol Graphics Modell 26(8):1269–1275

    Google Scholar 

  • Tan VBC, Deng M, Tay TE (2009) Molecular dynamics simulation of glass/epoxy interfaces. In: ICCM international conferences on composite materials

  • Thomason JL (2019) Glass fibre sizing: a review. Compos A Appl Sci Manuf 127:105619

    Google Scholar 

  • Torres-Knoop A, Kryven I, Schamboeck V et al (2018) Modeling the free-radical polymerization of hexanediol diacrylate (HDDA): a molecular dynamics and graph theory approach. Soft Matter 14(17):3404–3414

    Google Scholar 

  • Tsai JL, Tzeng SH, Chiu YT (2010) Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Compos Part B 41:106–115

    Google Scholar 

  • Tserpes KI, Papanikos P (2005) Finite element modeling of single-walled carbon nanotubes. Compos B Eng 36(5):468–477

    Google Scholar 

  • Turcsanyi B, Pukanszky B, Tudos F (1988) Composition dependence of tensile yield stress in filled polymers. J Mater Sci Lett 7:160–162

    Google Scholar 

  • Varshney V, Patnaik SS, Roy AK et al (2008) A molecular dynamics study of epoxy-based networks: cross-linking procedure and prediction of molecular and material properties. Macromolecules 41(18):6837–6842

    Google Scholar 

  • Wang Z, Qiang LV, Chen S et al (2016) Effect of interfacial bonding on interphase properties in SiO2/epoxy nanocomposite: a molecular dynamics simulation study. ACS Appl Mater Interfaces 8(11):7499–7508

    Google Scholar 

  • Watanabe T (2011) Grain boundary engineering: historical perspective and future prospects. J Mater Sci 46:4095–4115

    Google Scholar 

  • Wu C, Xu W (2006) Atomistic molecular modelling of cross-linked epoxy resin. Polymer 47(16):6004–6009

    Google Scholar 

  • Wu C, Xu W (2007a) Atomistic molecular simulations of structure and dynamics of cross-linked epoxy resin. Polymer 48(19):5802–5812

    Google Scholar 

  • Wu C, Xu W (2007b) Atomistic simulation study of absorbed water influence on structure and properties of cross-linked epoxy resin. Polymer 48(18):5440–5448

    Google Scholar 

  • Yang S, Choi J, Cho M (2012) Elastic stiffness and filler size effect of covalently grafted nanosilica polyimide composites: molecular dynamics study. ACS Appl Mater Interfaces 4(9):4792–4799

    Google Scholar 

  • Yu S, Yang S, Cho M (2009) Multi-scale modeling of cross-linked epoxy nanocomposites. Polymer 50(3):945–952

    Google Scholar 

  • Zare Y, Rhee KY, Park SJ (2020) A model for the tensile modulus of polymer nanocomposites assuming carbon nanotube networks and interphase zones. Acta Mech 231:35–45

    Google Scholar 

  • Zhandarov S, Mader E, Scheffler C et al (2018) Investigation of interfacial strength parameters in polymer matrix composites: compatibility and reproducibility. Adv Ind Eng Polym Res 1:82–92

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Hosseini-Toudeshky.

Ethics declarations

Conflict of interest

The authors have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saber, M., Hosseini-Toudeshky, H. Material Characterization of Glass/Siloxane Interface in Composite Materials. Iran J Sci Technol Trans Mech Eng 48, 661–674 (2024). https://doi.org/10.1007/s40997-023-00670-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-023-00670-w

Keywords

Navigation