Log in

Investigating Thermally Develo** Gas Slip Flow Inside a Micro-annulus Including Viscous Dissipation and Axial Conduction Effects Using the Lattice Boltzmann Method

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In the present paper, forced convection of a laminar gas flow inside two concentric micro-cylinders with constant wall heat flux condition is numerically investigated. For this purpose, the energy equation is solved in the continuum and slip flow regimes for the thermally develo** condition using the lattice Boltzmann method. To the authors’ best knowledge, the simultaneous effects of viscous dissipation, rarefaction, axial conduction, and radius ratio in the thermally develo** region of a micro-annulus channel have not been considered in the literature. In the present work, the effects of the mentioned parameters on the heat transfer characteristics are studied in detail. Furthermore, the lattice Boltzmann method is developed to apply the viscous dissipation source term in axisymmetric slip flows under constant wall heat flux condition. The results show that in the absence of viscous dissipation, due to energy balance in the fluid, the bulk fluid temperature is independent of the Knudsen number, and its value increases linearly along the microchannel. However, the bulk fluid temperature changes with the Knudsen number by including the viscous dissipation. Also, increasing the rarefaction effect, reduces the impacts of Brinkman number and radius ratio on the local Nusselt number. Moreover, the influence of viscous dissipation is more significant at higher radius ratios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(A\) :

Cross-sectional area of micro-annulus (m2)

Br:

Brinkman number

\(c\) :

Lattice streaming speed (m s−1)

\({c}_{\mathrm{p}}\) :

Specific heat (J kg−1 K−1)

\({c}_{\mathrm{s}}\) :

Lattice speed of sound (m s−1)

\({D}_{\mathrm{h}}\) :

Hydraulic diameter (m)

\(\overrightarrow{e}\) :

Lattice velocity vector (m s−1)

\({g}_{\alpha }\) :

Energy distribution function in the lattice direction

\(h\) :

Local convective heat transfer coefficient (W m−2 K−1)

\(k\) :

Thermal conductivity (W m−1 K−1)

Kn:

Knudsen number

\(L\) :

Microchannel length (m)

Ma:

Mach number

\(P\) :

Pressure (N m−2)

Nux :

Local Nusselt number

Pe:

Peclet number

Pr:

Prandtl number

\({Q}_{\alpha }\) :

Viscous heating source term in the lattice direction (s−1)

\(q\) :

Wall heat flux (W m−2)

\({r}^{*}\) :

Radius ratio

\(R\) :

Dimensionless radial direction

Re:

Reynolds number

\({S}_{\alpha }\) :

Source term for the energy equation in the lattice direction (s−1)

\(T\) :

Temperature (K)

\(t\) :

Time (s)

\(\overrightarrow{u}\) :

Velocity vector (m s−1)

\({u}_{m}\) :

Mean velocity (m s−1)

\(U\) :

Dimensionless axial velocity

\({w}_{\alpha }\) :

Weight coefficients in the lattice direction

\(X\) :

Dimensionless axial direction

\(\overrightarrow{x}\) :

Space vector (m)

\(\gamma\) :

Specific heat ratio

\(\mu\) :

Dynamic viscosity (kg m−1 s−1)

\(\Delta t\) :

Lattice time step (s)

\(\Delta x\) and \(\Delta r\) :

Lattice spacing in axial and radial directions (m)

\(\theta\) :

Dimensionless temperature

\(\lambda\) :

Molecular mean free path (m)

\(\upnu\) :

Kinematic viscosity (m2 s−1)

\(\rho\) :

Density (kg m−3)

\({\rho }_{s}^{2}\) :

Slip radius in the circular microchannel

\({\sigma }_{T}\) :

Thermal accommodation coefficient

\({\sigma }_{v}\) :

Tangential momentum accommodation coefficient

\({\tau }_{g}\) :

Relaxation time for the energy distribution function

\(\chi\) :

Thermal diffusivity (m2 s−1)

\({\omega }_{g}\) :

Collision frequency for the energy equation

\(\varphi\) :

Dissipation function (s−2)

b:

Bulk

i:

Inner wall

in:

Inlet

jump:

Temperature jump

\(m\) and\(n\) :

Last nodes in the radial and axial directions

o:

Outer wall

s:

Properties of fluid at the wall

w:

Wall

\(\alpha\) :

Lattice direction

\(0\) :

First node in the radial direction

eq:

Equilibrium

′:

Equivalent value

*:

Dimensionless value

LBM:

Lattice Boltzmann method

FDM:

Finite difference method

References

  • Ameel TA, Wang X, Barron RF, Warrington RO (1997) Laminar forced convection in a circular tube with constant heat flux and slip flow. Microscale Thermophys Eng 1:303–320

    Article  CAS  Google Scholar 

  • Astoul T, Wissocq G, Boussuge JF, Sengissen A, Sagaut P (2020) Analysis and reduction of spurious noise generated at grid refinement interfaces with the lattice Boltzmann method. J Comput Phys 418:109645

    Article  MathSciNet  Google Scholar 

  • Avci M, Aydin O (2008) Laminar forced convection slip-flow in a micro-annulus between two concentric cylinders. J Heat Mass Transf 51:3460–3467

    Article  CAS  Google Scholar 

  • Aydin O, Avci M (2006) Heat and fluid flow characteristics of gases in micropipes. J Heat Mass Transf 49:1723–1730

    Article  Google Scholar 

  • Bahrami H, Begman TL, Faghri A (2012) Forced convective heat transfer in a microtube including rarefaction, viscous dissipation and axial conduction effects. J Heat Mass Transfer 55:6665–6675

    Article  Google Scholar 

  • Barisik M, Yazicioglu AG, Cetin B, Kakac S (2015) Analytical solution of thermally develo** microtube heat transfer including axial conduction, viscous dissipation, and rarefaction effects. Int Commun Heat Mass Transf 67:81–88

    Article  Google Scholar 

  • Bin D, Bao-Chang S, Guang-Chao Q (2005) A new lattice Bhatnagar–Gross–Krook model for the convection-diffusion equation with a source term. Chin Phys Lett 22:267

    Article  ADS  Google Scholar 

  • Cetin B, Yazicioglu AG, Kakac S (2008) Fluid flow in microtubes with axial conduction including rarefaction and viscous dissipation. Int Commun Heat Mass Transf 35:535–544

    Article  CAS  Google Scholar 

  • Cetin B, Yazicioglu AG, Kakac S (2009) Slip-flow heat transfer in microtubes with axial conduction and viscous dissipation-An extended Graetz problem. Int J Therm Sci 48:1673–1678

    Article  CAS  Google Scholar 

  • Char MI, Tai BC (2010) Effects of viscous dissipation on slip-flow heat transfer in a micro annulus. J Heat Mass Transf 53:1402–1408

    Article  Google Scholar 

  • Chauhan PR, Kumar R, Bharj RS (2019) Optimization of the circular microchannel heat sink under viscous heating effect using entropy generation minimization method. Therm Sci Eng Prog 13:100365

    Article  Google Scholar 

  • Chen S (2010) Lattice Boltzmann method for slip flow heat transfer in circular microtubes: Extended Graetz problem. Appl Math Comput 217:3314–3320

    MathSciNet  Google Scholar 

  • Coelho PM, Pinho FT (2006) Fully-developed heat transfer in annuli with viscous dissipation. Int J Heat Mass Transfer 49:3349–3359

    Article  Google Scholar 

  • Deng D, Zeng L, Sun W (2021) A review on flow boiling enhancement and fabrication of enhanced microchannels of microchannel heat sinks. Int J Heat Mass Transfer 175:121332

    Article  Google Scholar 

  • D’Orazio A, Karimipour A (2019) A useful case study to develop lattice Boltzmann method performance: gravity effect on slip velocity and temperature profiles of an air flow inside a microchannel under a constant heat flux boundary condition. J Heat Mass Transf 136:1017–1029

    Article  Google Scholar 

  • Duan Z, Muzychka YS (2008) Slip flow heat transfer in annular microchannels with constant heat flux. J Heat Transfer 130:092401–092408

    Article  Google Scholar 

  • Elguennouni Y, Hssikou M, Baliti J, Alaoui M (2020) Thermal lattice Boltzmann model for nonisothermal gas flow in a two-dimensional microchannel. Math Probl Eng 2020:1–13

    Article  Google Scholar 

  • Ghadirzadeh S, Kalteh M (2017) Lattice Boltzmann simulation of temperature jump effect on the nanofluid heat transfer in an annulus microchannel. Int J Mech Sci 133:524–534

    Article  Google Scholar 

  • Harley JC, Huang Y, Bau HH, Zemel JN (1995) Gas flow in micro-channels. J Fluid Mech 284:257–274

    Article  ADS  CAS  Google Scholar 

  • Hong C, Asako Y, Suzuki K (2011) Convection heat transfer in concentric micro annular tubes with constant wall temperature. J Heat Mass Transf 54:5242–5252

    Article  Google Scholar 

  • Hssikou M, Baliti J, Alaoui M (2016) The planar Couette flow with slip and jump boundary conditions in a microchannel. Monte Carlo Methods Appl 22:337–347

    Article  MathSciNet  Google Scholar 

  • Kandlikar S, Garimella S, Li D, Colin S, King MR (2005) Heat transfer and fluid flow in minichannels and microchannels, 1st edn. Elsevier Science, New York

    Google Scholar 

  • Karniadakis G, Beskok A, Aluru N (2005) Microflows and nanoflows fundamental and simulation, 1st edn. Springer, New York

    Google Scholar 

  • Kavehpour HP, Faghri M, Asako Y (1997) Effects of compressibility and rarefaction on gaseous flows in microchannels. Numer Heat Transfer Part A 32:677–696

    Article  ADS  CAS  Google Scholar 

  • Khajeh Arzani H, Amiri A, Arzani HK, Rozali SB, Kazi SN, Badarudin A (2016) Toward improved heat transfer performance of annular heat exchangers with water/ethylene glycolbased nanofluids containing graphene nanoplatelets. J Therm Anal Calorim 126:1427–1436

    Article  CAS  Google Scholar 

  • Khalesi J, Sarunac N, Razzaghpanah Z (2020) Supercritical CO2 conjugate heat transfer and flow analysis in a rectangular microchannel subject to uniformly heated substrate wall. Therm Sci Eng Prog 19:100596

    Article  Google Scholar 

  • Korba D, Wang N, Li L (2020) Accuracy of interface schemes for conjugate heat and mass transfer in the lattice Boltzmann method. J Heat Mass Transf 156:119694

    Article  Google Scholar 

  • Kumar R, Mahulikar SP (2021) Effect of density variation on rarefied and non-rarefied gaseous flows in develo** region of microtubes. Iran J Sci Technol Trans Mech Eng 45:415–425

    Article  Google Scholar 

  • Kushwaha HM, Sahu SK (2016) Comprehensive analysis of convective heat transfer in parallel plate microchannel with viscous dissipation and constant heat flux boundary conditions. J Inst Eng (india) Ser D 98:553–566

    Article  Google Scholar 

  • Lai H, Ma C (2009) Lattice Boltzmann method for the generalized Kuramoto-Sivashinsky equation. Phys A (amsterdam, Neth.) 388:1405–1412

    Article  ADS  MathSciNet  CAS  Google Scholar 

  • Lakhi M, Safavinejad A (2021) Numerical investigation of combined force convective radiative heat transfer in a horizontal channel with lattice Boltzmann method. J Therm Anal Calorim 146:1911–1922

    Article  CAS  Google Scholar 

  • Lalami AA, Espili AH (2020) Two new approaches for applying Neumann boundary condition in thermal lattice Boltzmann method. Comput Fluids 198:104407

    Article  MathSciNet  Google Scholar 

  • Lalami AA, Kalteh M (2019) Lattice Boltzmann simulation of nanofluid conjugated heat transfer in a wide microchannel: effect of temperature jump, axial conduction and viscous dissipation. Meccanica 54:135–153

    Article  MathSciNet  Google Scholar 

  • Lalami AA, Afrouzi HH, Moshfegh A, Omidi M, Javadzadeghan A (2019) Investigation of nanofluid heat transfer in a microchannel under magnetic field via lattice Boltzmann method: effects of surface hydrophobicity, viscous dissipation, and Joule heating. J Heat Transf 141:062406–062410

    Google Scholar 

  • Li Q, He YL, Tang GH, Tao WQ (2009) Lattice Boltzmann model for axisymmetric thermal flows. Phys Rev E 80:037702–037704

    Article  ADS  CAS  Google Scholar 

  • Mai HC, Lin KH, Yang CH, Lin CA (2010) A thermal lattice Boltzmann model for flows with viscous heat dissipation. Comput Model Eng Sci (CMES) 61:45–63

    MathSciNet  Google Scholar 

  • Mohamad AA (2011) Lattice Boltzmann Method: fundamentals and engineering applications with computer codes. Springer, New York

    Book  Google Scholar 

  • Ren J, Liu X, Gao Y (2021) Axisymmetric lattice Boltzmann model with slip boundary conditions for liquid flows in microtube. Eur J Mech B Fluids 89:430–444

    Article  MathSciNet  Google Scholar 

  • Sadeghi A, Saidi MH (2010) Viscous dissipation and rarefaction effects on laminar forced convection in microchannels. J Heat Transf 132:072401–072412

    Article  Google Scholar 

  • Sen S, Darici S (2017) Transient conjugate heat transfer in a circular microchannel involving rarefaction, viscous dissipation and axial conduction effects. Appl Therm Eng 111:855–862

    Article  CAS  Google Scholar 

  • Su L, Duan Z, He B, Ma H, Ding G (2019) Laminar flow and heat transfer in the entrance region of elliptical minichannels. J Heat Mass Transf 145:118717

    Article  Google Scholar 

  • Su L, Duan Z, He B, Ma H, Ning X, Ding G, Cao Y (2020) Heat transfer characteristics of thermally develo** flow in rectangular microchannels with constant wall temperature. Int J Therm Sci 155:106412

    Article  Google Scholar 

  • Sun Q, Choi KS, Mao X (2020) An analytical solution of convective heat transfer in microchannel or nanochannel. Int Commun Heat Mass Transf 117:104766

    Article  CAS  Google Scholar 

  • Taghilou M, Zarei S (2021) LBM investigation of the droplet displacement and rubbing on a vertical wall by a modified Pseudopotential Model. Iran J Sci Technol Trans Mech Eng 45:755–768

    Article  Google Scholar 

  • Tuckerman DB, Pease RFW (1981) High performance heat sinking for VLSI. IEEE Electron Device Lett 5:126–129

    Article  ADS  Google Scholar 

  • Wang J, Wang M, Li Z (2007) A Lattice Boltzmann algorithm for fluid- solid conjugate heat transfer. Int J Therm Sci 46:228–234

    Article  CAS  Google Scholar 

  • Yari M (2009) Second-law analysis of flow and heat transfer inside a microannulus. Int Commun Heat Mass Transf 36:78–87

    Article  CAS  Google Scholar 

  • Zhang M, Meng G, Wei X (2012) A review on slip models for gas microflows. Microfluid Nanofluid 13:845–882

    Article  CAS  Google Scholar 

  • Zhang Y, **e G, Karimipour A (2020) Comprehensive analysis on the effect of asymmetric heat fluxes on microchannel slip flow and heat transfer via a lattice Boltzmann method. Int Commun Heat Mass Transf 118:104856

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Kalteh.

Ethics declarations

Conflict of interest

The authors declare that they have no known conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hami, M., Kalteh, M. Investigating Thermally Develo** Gas Slip Flow Inside a Micro-annulus Including Viscous Dissipation and Axial Conduction Effects Using the Lattice Boltzmann Method. Iran J Sci Technol Trans Mech Eng 48, 49–64 (2024). https://doi.org/10.1007/s40997-023-00643-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-023-00643-z

Keywords

Navigation