Log in

Ranks of elliptic curves and deep neural networks

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

Determining the rank of an elliptic curve \(E/\mathbb {Q}\) is a difficult problem. In applications such as the search for curves of high rank, one often relies on heuristics to estimate the analytic rank (which is equal to the rank under the Birch and Swinnerton-Dyer conjecture). In this paper, we propose a novel rank classification method based on deep convolutional neural networks (CNNs). The method takes as input the conductor of E and a sequence of normalized Frobenius traces \(a_p\) for primes p in a certain range (\(p<10^k\) for \(k=3,4,5\)), and aims to predict the rank or detect curves of “high” rank. We compare our method with eight simple neural network models of the Mestre–Nagao sums, which are widely used heuristics for estimating the rank of elliptic curves. We evaluate our method on two datasets: the LMFDB and a custom dataset consisting of elliptic curves with trivial torsion, conductor up to \(10^{30}\), and rank up to 10. Our experiments demonstrate that the CNNs outperform the Mestre–Nagao sums on the LMFDB dataset (remarkably, the neural network that took as an input all Mestre–Nagao sums performed much better than each sum individually). On the custom dataset, the performance of the CNNs and the Mestre–Nagao sums is comparable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author M.K. The data are not publicly available due to the large size. The computer code that supports the findings of this study have been deposited at https://github.com/domagojvlah/deepellrank.

References

  1. Bober, J.W.: Conditionally bounding analytic ranks of elliptic curves. In: ANTS X—Proceedings of the Tenth Algorithmic Number Theory Symposium, vol. 1 of Open Book Ser., pp. 135–144. Math. Sci. Publ., Berkeley, CA (2013)

  2. Booker, A.R.: Numerical tests of modularity. J. Ramanujan Math. Soc. 20(4), 283–339 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Booker, A.R., Sijsling, J., Sutherland, A.V., Voight, J., Yasaki, D.: A database of genus-2 curves over the rational numbers. LMS J. Comput. Math. 19(suppl. A), 235–254 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boughorbel, S., Jarray, F., El-Anbari, M.: Optimal classifier for imbalanced data using Matthews correlation coefficient metric. PLoS ONE 12(6), 1–17 (2017). (06)

    Article  Google Scholar 

  5. Breuil, C., Conrad, B., Diamond, F., Taylor, R.: On the modularity of elliptic curves over \(\mathbb{Q} \): wild 3-adic exercises. J. Am. Math. Soc. 14(4), 843–939 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Campbell, G.: Finding elliptic curves and families of elliptic curves over \(\mathbb{Q}\) of large rank. PhD thesis, Rutgers University (1999)

  7. Cassels, J.W.S.: Lectures on Elliptic Curves. London Mathematical Society Student Texts, vol. 24. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  8. Cohen, H.: Computing \(L\)-functions: a survey. J. Théor. Nombres Bordeaux 27(3), 699–726 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Davis, A., Veličković, P., Buesing, L., et al.: Advancing mathematics by guiding human intuition with AI. Nature 600, 70–74 (2021)

    Article  MATH  Google Scholar 

  10. Dujella, A., Peral, J.C.: Construction of high rank elliptic curves. J. Geom. Anal. 31(7), 6698–6724 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dujella, A.: Infinite families of elliptic curves with high rank and prescribed torsion. https://web.math.pmf.unizg.hr/~duje/tors/generic.html

  12. Elkies, N.D.: \(Z^{28}\) in \(E(\mathbb{Q})\). Number Theory Listserver (2006)

  13. Elkies, N.D.: Three lectures on elliptic surfaces and curves of high rank. ar**v:0709.2908 (2007)

  14. Elkies, N.D., Klagsbrun, Z.: New rank records for elliptic curves having rational torsion. In: ANTS XIV. Proceedings of the Fourteenth Algorithmic Number Theory Symposium, Auckland, New Zealand, virtual event, June 29–July 4, 2020, pp. 233–250. Mathematical Sciences Publishers (MSP), Berkeley, CA (2020)

  15. Goldfeld, D.: Sur les produits partiels eulériens attachés aux courbes elliptiques. C. R. Acad. Sci. Paris Sér. I Math. 294(14), 471–474 (1982)

    MathSciNet  MATH  Google Scholar 

  16. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  17. He, Y.-H., Lee, K.-H., Oliver, T., Pozdnyakov, A.: Murmurations of elliptic curves. ar**v:2204.10140 (2022)

  18. He, Y.-H., Lee, K.-H., Oliver, T.: Machine learning invariants of arithmetic curves. J. Symb. Comput. 115, 478–491 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  19. Howard, J., et al.: fastai. https://github.com/fastai/fastai (2018)

  20. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arxiv:1502.03167 (2015)

  21. Ivek, T., Vlah, D.: BlackBox: generalizable reconstruction of extremal values from incomplete spatio-temporal data. Extremes 24(1), 145–162 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ivek, T., Vlah, D.: Reconstruction of incomplete wildfire data using deep generative models. Extremes (2023)

  23. Kazalicki, M., Vlah, D.: deepellrank. https://github.com/domagojvlah/deepellrank (2022)

  24. Kedlaya, K.S., Sutherland, A.V.: Computing \(L\)-series of hyperelliptic curves. In: Algorithmic number theory, volume 5011 of Lecture Notes in Comput. Sci., pp. 312–326. Springer, Berlin (2008)

  25. Kim, S., Murty, M.R.: From the Birch and Swinnerton-Dyer conjecture to Nagao’s conjecture. Math. Comput. 92(339), 385–408 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2017)

  27. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1106–1114 (2012)

    Google Scholar 

  28. Mazur, B.: Modular curves and the Eisenstein ideal. Publ. Math. Inst. Hautes Étud. Sci. 47, 33–186 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mestre, J.-F.: Construction d’une courbe elliptique de rang \(\ge 12\). C. R. Acad. Sci. Paris Sér. I 295, 643–644 (1982)

    MathSciNet  MATH  Google Scholar 

  30. Močkus, J.: On Bayesian Methods for Seeking the Extremum, pp. 400–404. Springer, Berlin (1975)

    MATH  Google Scholar 

  31. Nagao, K.: Examples of elliptic curves over \(\mathbb{Q}\) with rank \(\ge 17\). Proc. Jpn. Acad. Ser. A 68(9), 287–289 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Nitish, S., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(56), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  33. PARI/GP, version 2.11.1. Bordeaux 2019. http://pari.math.u-bordeaux.fr/

  34. Park, J., Poonen, B., Voight, J., Wood, M.M.: A heuristic for boundedness of ranks of elliptic curves. J. Eur. Math. Soc. (JEMS) 21(9), 2859–2903 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  35. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Benoit Steiner, L., Fang, J.B., Chintala, S.: Pytorch: An imperative style, high-performance deep learning library. In: Wallach, H.M., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E.B., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, 8–14 December 2019, pp. 8024–8035. Canada, Vancouver, BC (2019)

  36. Poincaré, H.: Sur les propriétés arithmétiques des courbes algébriques. J. de Math. 5(7), 161–233 (1901)

    MATH  Google Scholar 

  37. Smith, L.N.: A disciplined approach to neural network hyper-parameters: part 1—learning rate, batch size, momentum, and weight decay (2018)

  38. Smith, L.N., Topin, N.: Very fast training of neural networks using large learning rates. Super-convergence (2018)

  39. Stein, W.A. et al.: Purple SAGE. http://purple.sagemath.org/ (2011)

  40. The LMFDB Collaboration. The L-functions and modular forms database. http://www.lmfdb.org (2022). Accessed 4 July 2022

  41. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł, Polosukhin, I.: Attention is all you need. In: Guyon, I., Von Luxburg, U., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc., Red Hook (2017)

    Google Scholar 

  42. Vlah, D., Šepetanc, K., Pandžić, H.: Solving bilevel optimal bidding problems using deep convolutional neural networks. IEEE Syst. J. (2023). https://doi.org/10.1109/JSYST.2022.3232942

    Article  Google Scholar 

  43. Wagner, A.Z.: Constructions in combinatorics via neural networks. ar**v:2104.14516 (2021)

  44. Watkins, M.: A discursus on 21 as a bound for ranks of elliptic curves over q, and sundry related topics. http://magma.maths.usyd.edu.au/~watkins/papers/DISCURSUS.pdf (2015)

  45. Watkins, M., Donnelly, S., Elkies, N.D., Fisher, T., Granville, A., Rogers, N.F.: Ranks of quadratic twists of elliptic curves. In: Numéro consacré au trimestre “Méthodes arithmétiques et applications”, automne 2013, pp. 63–98. Besançon: Presses Universitaires de Franche-Comté (2014)

  46. Wiles, A.: Modular forms, elliptic curves, and Fermat’s Last Theorem. In: Proceedings of the International Congress of Mathematicians, ICM ’94, August 3–11, 1994, Zürich, Switzerland. Vol. I, pp. 243–245. Basel: Birkhäuser (1995)

Download references

Acknowledgements

We would like to express our sincere gratitude to the anonymous referees whose insightful comments and suggestions greatly improved the quality of the paper. The first author was supported by the Croatian Science Foundation under the Project No. IP-2018-01-1313, and by the QuantiXLie Center of Excellence, a project co-financed by the Croatian Government and European Union through the European Regional Development Fund - the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004). The second author was supported by Croatian Science Foundation (HRZZ) Grant PZS-2019-02-3055 from the “Research Cooperability” program funded by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matija Kazalicki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazalicki, M., Vlah, D. Ranks of elliptic curves and deep neural networks. Res. number theory 9, 53 (2023). https://doi.org/10.1007/s40993-023-00462-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-023-00462-w

Navigation