Log in

Modular forms and an explicit Chebotarev variant of the Brun–Titchmarsh theorem

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

We prove an explicit Chebotarev variant of the Brun–Titchmarsh theorem. This leads to explicit versions of the best known unconditional upper bounds toward conjectures of Lang and Trotter for the coefficients of holomorphic cuspidal newforms. In particular, we prove that

$$\begin{aligned} \lim _{x \rightarrow \infty } \frac{\#\{1 \le n \le x \mid \tau (n) \ne 0\}}{x} > 1-1.15 \times 10^{-12}, \end{aligned}$$

where \(\tau (n)\) is Ramanujan’s tau-function. This is the first known positive unconditional lower bound for the proportion of positive integers n such that \(\tau (n) \ne 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Chatzigeorgiou, I.: Bounds on the Lambert function and their application to the outage analysis of user cooperation. IEEE Commun. Lett. 17(8), 1505–1508 (2013)

    Article  Google Scholar 

  2. Clozel, L., Thorne, J.A.: Level-raising and symmetric power functoriality. III. Duke Math. J. 166(2), 325–402 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cojocaru, A.C., Murty, M.R., et al.: An Introduction to Sieve Methods and Their Applications, vol. 66. Cambridge University Press, Cambridge (2006)

  4. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert \(W\)-function. Adv. Comput. Math. 5(1), 329–359 (1996)

  5. Cox, D.A.: Primes of the Form \(x^2 + ny^2\). Pure and Applied Mathematics (Hoboken), 2nd edn. Wiley, Hoboken (2013). Fermat, class field theory, and complex multiplication

  6. Debaene, K.: Explicit counting of ideals and a Brun-Titchmarsh inequality for the Chebotarev density theorem. Int. J. Number Theory 15(5), 883–905 (2019)

  7. Edixhoven, B., Couveignes, J.-M. (eds.): Computational Aspects of Modular Forms and Galois Representations. Annals of Mathematics Studies, vol. 176. Princeton University Press, Princeton (2011). How one can compute in polynomial time the value of Ramanujan’s tau at a prime

  8. Elkies, N.D.: The existence of infinitely many supersingular primes for every elliptic curve over \({ {Q}}\). Invent. Math. 89(3), 561–567 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elkies, N.D.: Distribution of Supersingular Primes. Number 198–200, pp. 127–132 (1992). Journées Arithmétiques, (1989) (Luminy, 1989)

  10. Fouvry, E., Murty, M.R.: On the distribution of supersingular primes. Can. J. Math. 48(1), 81–104 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gelbart, S., Jacquet, H.: A relation between automorphic representations of \({\rm GL}(2)\) and \({\rm GL}(3)\). Ann. Sci. École Norm. Sup. (4) 11(4):471–542 (1978)

  12. Golod, E.S., Shafarevich, I.R.: On the class field tower. Izv. Akad. Nauk SSSR Ser. Mat. 28, 261–272 (1964)

    MathSciNet  MATH  Google Scholar 

  13. Kim, H.H.: Functoriality for the exterior square of \({\rm GL}_4\) and the symmetric fourth of \({\rm GL}_2\). J. Am. Math. Soc. 16(1):139–183 (2003). With appendix 1 by Dinakar Ramakrishnan and appendix 2 by Kim and Peter Sarnak

  14. Kim, H.H., Shahidi, F.: Functorial products for \({\rm GL}_2\times {\rm GL}_3\) and the symmetric cube for \({\rm GL}_2\). Ann. Math. (2) 155(3):837–893 (2002). With an appendix by Colin J. Bushnell and Guy Henniart

  15. Lagarias, J.C., Odlyzko, A.M.: Effective versions of the Chebotarev density theorem. In: Algebraic Number Fields: \(L\)-Functions and Galois Properties (Proc. Sympos., Univ. Durham, Durham, 1975), pp. 409–464 (1977)

  16. Lagarias, J.C., Montgomery, H.L., Odlyzko, A.M.: A bound for the least prime ideal in the Chebotarev density theorem. Invent. Math. 54(3), 271–296 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lang, S., Trotter, H.: Frobenius Distributions in \({\rm GL}_{2}\)-Extensions. Lecture Notes in Mathematics, vol. 504. Springer, Berlin (1976)

  18. Lehmer, D.H.: The vanishing of Ramanujan’s function \(\tau (n)\). Duke Math. J. 14, 429–433 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  19. Luca, F., Radziwiłł, M., Shparlinski, I.E.: On the typical size and cancellations among the coefficients of some modular forms. Math. Proc. Camb. Philos. Soc. 166(1), 173–189 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Maynard, J.: On the Brun-Titchmarsh theorem. Acta Arith. 157(3), 249–296 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Montgomery, H.L., Vaughan, R.C.: The large sieve. Mathematika 20, 119–134 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Murty, V.K.: Modular forms and the Chebotarev density theorem. II. In: Analytic Number Theory (Kyoto, 1996)

  23. Murty, M.R., Murty, V.K., Saradha, N.: Modular forms and the Chebotarev density theorem. Am. J. Math. 110(2), 253–281 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Newton, J., Thorne, J.A.: Symmetric power functoriality for holomorphic modular forms. Publ. Math. Inst. Hautes Études Sci. 134, 1–116 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  25. Newton, J., Thorne, J.A.: Symmetric power functoriality for holomorphic modular forms, II. Publ. Math. Inst. Hautes Études Sci. 134, 117–152 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rademacher, H.: On the Phragmén–Lindelöf theorem and some applications. Math. Z. 72:192–204 (1959/1960)

  27. Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Ill. J. Math. 6(1), 64–94 (1962)

    MathSciNet  MATH  Google Scholar 

  28. Rouse, J., Thorner, J.: The explicit Sato-Tate conjecture and densities pertaining to Lehmer-type questions. Trans. Am. Math. Soc. 369(5), 3575–3604 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Serre, J.-P.: Congruences et formes modulaires [d’après H. P. F. Swinnerton-Dyer]. In Séminaire Bourbaki, 24e année (1971/1972), Exp. No. 416, pp. 319–338. Lecture Notes in Mathematics, vol. 317 (1973)

  30. Serre, J.-P.: Divisibilité de certaines fonctions arithmétiques. Enseign. Math. (2) 22(3–4):227–260 (1976)

  31. Serre, J.-P.: Quelques applications du théorème de densité de Chebotarev. Inst. Hautes Études Sci. Publ. Math. 54, 323–401 (1981)

    Article  MATH  Google Scholar 

  32. Serre, J.-P.: Sur la lacunarité des puissances de \(\eta \). Glasgow Math. J. 27, 203–221 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  33. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, 2nd edn., vol. 106. Springer, Dordrecht (2009)

  34. Swinnerton-Dyer, H.P.F.: On \(l\)-adic representations and congruences for coefficients of modular forms. In: Modular Functions of One Variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972). Lecture Notes in Mathematics, vol. 350, pp. 1–55. Springer, Berlin (1973)

  35. Thorner, J., Zaman, A.: An explicit bound for the least prime ideal in the Chebotarev density theorem. Algebra Number Theory 11(5), 1135–1197 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Thorner, J., Zaman, A.: A Chebotarev variant of the Brun-Titchmarsh theorem and bounds for the Lang-Trotter conjectures. Int. Math. Res. Not. IMRN 16, 4991–5027 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Thorner, J., Zaman, A.: A unified and improved Chebotarev density theorem. Algebra Number Theory 13(5), 1039–1068 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Titchmarsh, E.C.: A divisor problem. Rendiconti del Circolo Matematico di Palermo (1884-1940) 54(1):414–429 (1930)

  39. Wan, D.Q.: On the Lang-Trotter conjecture. J. Number Theory 35(3), 247–268 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  40. Weiss, A.: The least prime ideal. J. Reine Angew. Math. 338, 56–94 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zywina, D.: Bounds for the Lang–Trotter conjectures. In: SCHOLAR—A Scientific Celebration Highlighting Open Lines of Arithmetic Research. Contemp. Math., vol. 655, pp. 235–256. American Mathematical Society, Providence (2015)

Download references

Acknowledgements

The authors would like to thank Jesse Thorner for supervising this project and Ken Ono for his valuable suggestions. They are grateful for the support of grants from the National Science Foundation (DMS-2002265, DMS-2055118, DMS-2147273), the National Security Agency (H98230-22-1-0020), and the Templeton World Charity Foundation. This research was conducted as part of the 2022 Research Experiences for Undergraduates at the University of Virginia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hari R. Iyer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Iyer, H.R. & Shashkov, A. Modular forms and an explicit Chebotarev variant of the Brun–Titchmarsh theorem. Res. number theory 9, 46 (2023). https://doi.org/10.1007/s40993-023-00451-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-023-00451-z

Mathematics Subject Classification

Navigation