Log in

Eisenstein series, p-adic modular functions, and overconvergence

  • Research
  • Published:
Research in Number Theory Aims and scope Submit manuscript

Abstract

Let p be a prime \(\ge 5\). We establish explicit rates of overconvergence for some members of the “Eisenstein family”, notably for the p-adic modular function \(V(E_{(1,0)}^{*})/E_{(1,0)}^{*}\) (V the p-adic Frobenius operator) that plays a pivotal role in Coleman’s theory of p-adic families of modular forms. The proof goes via an in-depth analysis of rates of overconvergence of p-adic modular functions of form \(V(E_k)/E_k\) where \(E_k\) is the classical Eisenstein series of level 1 and weight k divisible by \(p-1\). Under certain conditions, we extend the latter result to a vast generalization of a theorem of Coleman–Wan regarding the rate of overconvergence of \(V(E_{p-1})/E_{p-1}\). We also comment on previous results in the literature. These include applications of our results for the primes 5 and 7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Buzzard, K., Kilford, L.J.P.: The \(2\)-adic eigencurve at the boundary of weight space. Compos. Math. 141, 605–619 (2005)

    Article  MathSciNet  Google Scholar 

  2. Coleman, R.F.: Classical and overconvergent modular forms. Invent. Math. 124, 215–241 (1996)

    Article  MathSciNet  Google Scholar 

  3. Coleman, R.F.: \(p\)-adic Banach spaces and families of modular forms. Invent. Math. 127, 417–479 (1997)

    Article  MathSciNet  Google Scholar 

  4. Coleman, R.F.: The Eisenstein family. Proc. Am. Math. Soc. 141, 2945–2950 (2013)

    Article  MathSciNet  Google Scholar 

  5. Coleman, R.F., Stevens, G., Teitelbaum, J.: Numerical experiments on families of \(p\)-adic modular forms. In: Buell, D.A., Teitelbaum, J.T. (eds) Computational perspectives on number theory. Proceedings of the Conference in Honor of A. O. L. Atkin, AMS/IP Studies in Advanced Mathematics, vol. 7, pp. 143–158 (1998)

  6. Coleman, R.F., Mazur, B.: The eigencurve. In: Galois representations in arithmetic algebraic geometry (Durham, 1996), London Math. Soc. Lecture Note Ser. vol. 254, pp. 1–113 (1998)

  7. Destefano, D.: Investigating slopes of overconvergent forms, thesis, University of Copenhagen (2017)

  8. Emerton, M.J.: \(2\)-adic modular forms of minimal slope. Thesis, Harvard (1998)

  9. Gouvêa, F.Q.: Arithmetic of \(p\)-adic modular forms, Lecture Notes in Math. vol. 1394. Springer (1988)

  10. Katz, N. M.: \(p\)-adic properties of modular schemes and modular forms. In: Kuyk, W., Serre, J.-P. (eds.) Modular functions of one variable III, Lecture Notes in Math. vol. 350, pp. 69–190 (1973)

  11. Lauder, A.G.B.: Computations with classical and \(p\)-adic modular forms. LMS J. Comput. Math. 14, 214–231 (2011)

    Article  MathSciNet  Google Scholar 

  12. Loeffler, D.: Spectral expansions of overconvergent modular functions. Int. Math. Res. Not, IMRN (2007)

  13. Roe, D.: The \(3\)-adic eigencurve at the boundary of weight space. Int. J. Number Theory 10, 1791–1806 (2014)

    Article  MathSciNet  Google Scholar 

  14. SageMath, an open-source mathematics software system, https://www.sagemath.org/index.html

  15. SageMath code used in section 5 is available at this url: https://sites.google.com/view/nrustom/other/eisenstein-series-and-overconvergence

  16. Serre, J.-P.: Formes modulaires et fonctions zêta \(p\)-adiques, pp. 191–268. In: Kuyk, W., Serre, J.-P. (eds.) Modular functions of one variable III, Lecture Notes in Math. vol. 350. Springer (1973)

  17. Smithline, L.M.: Slopes of \(p\)-adic modular forms. Thesis, Berkeley (2000)

  18. The PARI Group, PARI/GP version 2.11.4, Univ. Bordeaux, 2020. http://pari.math.u-bordeaux.fr/

  19. Wan, D.: Dimension variation of classical and \(p\)-adic modular forms. Invent. Math. 133, 449–463 (1998)

    Article  MathSciNet  Google Scholar 

  20. Washington, L.C.: Introduction to Cyclotomic Fields. Springer, New York (1982)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Kiming.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiming, I., Rustom, N. Eisenstein series, p-adic modular functions, and overconvergence. Res. number theory 7, 65 (2021). https://doi.org/10.1007/s40993-021-00292-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40993-021-00292-8

Keywords

Mathematics Subject Classification

Navigation