We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


Log in

Creating a global database “Nanomaterials in the soil environment”: future need for the terrestrial ecosystem

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

  • Published:
Energy, Ecology and Environment Aims and scope Submit manuscript

Abstract

The revolutionary nanotechnology has generated environment safety concerns due to accumulation and toxicity behavior of nanomaterials. Given the wide application of various nanomaterials in daily products of our life, their environmental release is exceedingly obvious. Moreover, soil is the major sink for nanomaterials after their intentional or inadvertent release into the environment. Enormous attempts have apparently been made to study the impact of nanomaterials in the soil environment. Besides that, our understanding is inadequate due to disparities among results and effects of nanomaterials ranging from lethal, sub-lethal, to non-toxic. Subsequently, interpreting the real potential of nanomaterials to affect the soil environment and associated ecological processes is a challenging task. The interactions of different nanomaterials within different soil environments are crucial to authenticate toxicity behavior. Correspondingly, a global perspective is required for a comprehensive understanding of the environmental impact of nanomaterials. Therefore, we propose the need for a global database of “Nanomaterials in the soil environment” based on the estimates of nanomaterials flow among the three major components, viz. soil, soil microbes, and plants. Since the soil ecosystem is the foundation for many ecological processes supporting aboveground plant community and humankind, there is a need for this global database to precisely address the environmental issues. We propose that the empirical data from this global database would be helpful in bridging the knowledge gaps in the right way. Moreover, through this challenging task, soil policy can be developed to regulate nanomaterials usage and to protect soil health and associated biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anjum NA, Gill SS, Duarte AC, Pereira E, Ahmad I (2013) Silver nanoparticles in soil–plant systems. J Nanopart Res 15:1896

    Google Scholar 

  • Arruda SCC, Silva ALD, Galazzi RM, Azevedo RA, Arruda MAZ (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705

    Google Scholar 

  • Bae S, Hwang YS, Lee YJ, Lee SK (2013) Effects of water chemistry on aggregation and soil adsorption of silver nanoparticles. Environ Health Toxicol 28:e2013006

    Google Scholar 

  • Bandyopadhyay S, Plascencia-Villa G, Mukherjee A, Rico CM, José-Yacamán M, Peralta-Videa JR, Gardea-Torresdey JL (2015) Comparative phytotoxicity of ZnONPs, bulk ZnO, and ionic zinc onto the alfalfa plants symbiotically associated with Sinorhizobium meliloti in soil. Sci Total Environ 515:60–69

    Google Scholar 

  • Batley GE, Kirby JK, McLaughlin MJ (2012) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46(3):854–862

    Google Scholar 

  • Bombin S, LeFebvre M, Sherwood J, Xu Y, Bao Y, Ramonell K (2015) Developmental and reproductive effects of iron oxide nanoparticles in Arabidopsis thaliana. Int J Mol Sci 16(10):24174–24193

    Google Scholar 

  • Boxall AB, Tiede K, Chaudhry Q (2007) Engineered nanomaterials in soils and water: how do they behave and could they pose a risk to human health? Nanomedicine 2(6):919–927

    Google Scholar 

  • Bundschuh M, Filser J, Lüderwald S, McKee MS, Metreveli G, Schaumann GE, Schulz R, Wagner S (2018) Nanoparticles in the environment: where do we come from, where do we go to? Environ Sci Eur 30(1):6

    Google Scholar 

  • Caballero-Guzman A, Nowack B (2016) A critical review of engineered nanomaterial release data: are current data useful for material flow modeling? Environ Pollut 213:502–517

    Google Scholar 

  • Calder AJ, Dimkpa CO, McLean JE, Britt DW, Johnsonc W, Anderson AJ (2012) Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6. Sci Total Environ 429:215–222

    Google Scholar 

  • Cao J, Feng Y, Lin X, Wang J (2016) Arbuscular mycorrhizal fungi alleviate the negative effects of iron oxide nanoparticles on bacterial community in rhizospheric soils. Front Environ Sci 4:10

    Google Scholar 

  • Chakravarty D, Erande MB, Late DJ (2015) Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants. J Sci Food Agric 95(13):2772–2778

    Google Scholar 

  • Chavan S, Nadanathangam V (2019) Effects of nanoparticles on plant growth-promoting bacteria in Indian agricultural soil. Agronomy 9(3):140

    Google Scholar 

  • Chen J, Dou R, Yang Z, Wang X, Mao C, Gao X, Wang L (2016) The effect and fate of water-soluble carbon nanodots in maize (Zea mays L.). Nanotoxicology 10(6):818–828

    Google Scholar 

  • Chen M, Arato M, Borghi L, Nouri E, Reinhardt D (2018) Beneficial services of arbuscular mycorrhizal fungi—from ecology to application. Front Plant Sci 9:1270

    Google Scholar 

  • Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42(12):4583–4588

    Google Scholar 

  • Chunjaturas W, Ferguson JA, Rattanapichai W, Sadowsky MJ, Sajjaphan K (2014) Shift of bacterial community structure in two Thai soil series affected by silver nanoparticles using ARISA. World J Microbiol Biotechnol 30:2119–2124

    Google Scholar 

  • Colman BP, Arnaout CL, Anciaux S, Gunsch C, Hochella MF, Kim B, Lowry GV, McGill BM, Reinsch BC, Richardson CJ, Unrine JM, Wright JP, Yin L, Bernhardt ES (2013) Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS ONE 8:e57189

    Google Scholar 

  • Cornelis G, DooletteMadeleine Thomas C, McLaughlin MJ, Kirby JK, Beak DG, Chittleborough D (2012) Retention and dissolution of engineered silver nanoparticles in natural soils. Soil Sci Soc Am J 76(3):891–902

    Google Scholar 

  • Cornelis G, Hund-Rinke K, Kuhlbusch T, Van den Brink N, Nickel C (2014) Fate and bioavailability of engineered nanoparticles in soils: a review. Crit Rev Environ Sci Technol 44(24):2720–2764

    Google Scholar 

  • De la Torre RR, Servin A, Hawthorne J, **ng B, Newman LA, Ma X, Chen G, White JC (2015) Terrestrial trophic transfer of bulk and nanoparticle La2O3 does not depend on particle size. Environ Sci Technol 49(19):1866–11874

    Google Scholar 

  • Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, Berdugo M, Campbell CD, Singh BK (2016) Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat Commun 7:10541

    Google Scholar 

  • Dimkpa CO, McLean JE, Latta DE, Manangon E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012) CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14:1–15

    Google Scholar 

  • Doolette CL, Gupta VV, Lu Y, Payne JL, Batstone DJ, Kirby JK, Navarro DA, McLaughlin MJ (2016) Quantifying the sensitivity of soil microbial communities to silver sulfide nanoparticles using metagenome sequencing. PLoS ONE 11(8):e0161979

    Google Scholar 

  • El-Temsah YS, Joner EJ (2012) Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ Toxicol 27(1):42–49

    Google Scholar 

  • Fang J, Shan X-q, Wen B, Lin J-m, Owens G (2009) Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environ Pollut 157:1101–1109

    Google Scholar 

  • Feng Y, Cui X, He S, Dong G, Chen M, Wang J, Lin X (2013) The role of metal nanoparticles in influencing arbuscular mycorrhizal fungi effects on plant growth. Environ Sci Technol 47(16):9496–9504

    Google Scholar 

  • Fraceto LF, de Lima R, Oliveira HC, Ávila DS, Chen B (2018) Future trends in nanotechnology aiming environmental applications. Energy Ecol Environ 3(2):69–71

    Google Scholar 

  • Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS ONE 8(12):e84441

    Google Scholar 

  • García-Gómez C, Fernández MD, García S, Obrador AF, Letón M, Babín M (2018) Soil pH effects on the toxicity of zinc oxide nanoparticles to soil microbial community. Environ Sci Pollut Res 25(28):28140–28152

    Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2012) Identification of soil bacteria susceptible to TiO2 and ZnO nanoparticles. Appl Environ Microbiol 78(18):6749–6758

    Google Scholar 

  • Grün AL, Manz W, Kohl YL, Meier F, Straskraba S, Jost C, Drexel R, Emmerling C (2019) Impact of silver nanoparticles (AgNP) on soil microbial community depending on functionalization, concentration, exposure time, and soil texture. Environ Sci Eur 31(1):15

    Google Scholar 

  • Grzybowski BA, Huck WT (2016) The nanotechnology of life-inspired systems. Nat Nanotechnol 11(7):585

    Google Scholar 

  • Hänsch M, Emmerling C (2010) Effects of silver nanoparticles on the microbiota and enzyme activity in soil. J Plant Nutr Soils Sci 173:554–558

    Google Scholar 

  • He S, Feng Y, Ni J, Sun Y, Xue L, Feng Y, Yu Y, Lin X, Yang L (2016) Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere 147:195–202

    Google Scholar 

  • He J, Wang W, Zhou D (2019) Transport and retention of silver nanoparticles in soil: Effects of input concentration, particle size and surface coating. Sci Total Environ 648:102–108

    Google Scholar 

  • Heckmann LH, Hovgaard MB, Sutherland DS, Autrup H, Besenbacher F, Scott-Fordsmand JJ (2011) Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida. Ecotoxicology 20(1):226–233

    Google Scholar 

  • Holbrook RD, Murphy KE, Morrow JB, Cole KD (2008) Trophic transfer of nanoparticles in a simplified invertebrate food web. Nat Nanotechnol 3(6):352

    Google Scholar 

  • Inshakova E, Inshakov O (2017) World market for nanomaterials: structure and trends. In: MATEC web of conferences, vol 129. EDP Sciences, p 02013

    Google Scholar 

  • Jiang F, Shen Y, Ma C, Zhang X, Cao W, Rui Y (2017) Effects of TiO2 nanoparticles on wheat (Triticum aestivum L.) seedlings cultivated under super-elevated and normal CO2 conditions. PLoS ONE 12(5):e0178088

    Google Scholar 

  • Jośko I, Oleszczuk P (2014) Phytotoxicity of nanoparticles—problems with bioassay choosing and sample preparation. Environ Sci Pollut Res 21(17):10215–10224

    Google Scholar 

  • Juan W, Kunhui S, Zhang L, Youbin S (2017) Effects of silver nanoparticles on soil microbial communities and bacterial nitrification in suburban vegetable soils. Pedosphere 27:482–490

    Google Scholar 

  • Judy JD, Unrine JM, Bertsch PM (2010) Evidence for biomagnification of gold nanoparticles within a terrestrial food chain. Environ Sci Technol 45(2):776–781

    Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15(6):1692

    Google Scholar 

  • Kibbey TC, Strevett KA (2019) The effect of nanoparticles on soil and rhizosphere bacteria and plant growth in lettuce seedlings. Chemosphere 221:703–707

    Google Scholar 

  • Klitzke S, Metreveli G, Peters A, Schaumann GE, Lang F (2015) The fate of silver nanoparticles in soil solution—sorption of solutes and aggregation. Sci Total Environ 535:54–60

    Google Scholar 

  • Lee WM, Kim SW, Kwak JI, Nam SH, Shin YJ, An YJ (2010) Research trends of ecotoxicity of nanoparticles in soil environment. Toxicol Res 26(4):253–259

    Google Scholar 

  • Lee W-M, Kwak JI, An Y-J (2012) Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: media effect on phytotoxicity. Chemosphere 86:491–499

    Google Scholar 

  • Levard C, Hotze EM, Colman BP, Dale AL, Truong L, Yang XY, Bone AJ, Brown GE Jr, Tanguay RL, Di Giulio RT, Bernhardt ES (2013) Sulfidation of silver nanoparticles: natural antidote to their toxicity. Environ Sci Technol 47(23):13440–13448

    Google Scholar 

  • Li L-Z, Zhou D-M, Peijnenburg WJGM, van Gestel CAM, ** S-Y, Wang Y-J, Wang P (2011) Toxicity of zinc oxide nanoparticles in the earthworm, Eisenia fetida and subcellular fractionation of Zn. Environ Int 37:1098–1104

    Google Scholar 

  • Li H, Huang J, Lu F, Liu Y, Song Y, Sun Y, Zhong J, Huang H, Wang Y, Li S, Lifshitz Y (2018) Impacts of carbon dots on rice plants: boosting the growth and improving the disease resistance. ACS Appl Bio Mater 1(3):663–672

    Google Scholar 

  • Lin D, **ng B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Google Scholar 

  • Linkov I, Bates ME, Canis LJ, Seager TP, Keisler JM (2011) A decision-directed approach for prioritizing research into the impact of nanomaterials on the environment and human health. Nat Nanotechnol 6:784–787

    Google Scholar 

  • Lu C, Zhang C, Wen J, Wu G, Tao M (2002) Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21(3):168–171

    Google Scholar 

  • Ma XM, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061

    Google Scholar 

  • Ma Y, Yao Y, Yang J, He X, Ding Y, Zhang P, Zhang J, Wang G, **e C, Luo W, Zhang J (2018) Trophic transfer and transformation of CeO2 nanoparticles along a terrestrial food chain: influence of exposure routes. Environ Sci Technol 52(14):7921–7927

    Google Scholar 

  • MacLean AM, Bravo A, Harrison MJ (2017) Plant signaling and metabolic pathways enabling arbuscular mycorrhizal symbiosis. Plant Cell 29:2319–2335

    Google Scholar 

  • Manter DK, Delgado JA, Blackburn HD, Harmel D, de León AAP, Honeycutt CW (2017) Opinion: why we need a national living soil repository. PNAS 114(52):13587–13590

    Google Scholar 

  • Margenot AJ, Rippner DA, Dumlao MR, Nezami S, Green PG, Parikh SJ, McElrone AJ (2018) Copper oxide nanoparticle effects on root growth and hydraulic conductivity of two vegetable crops. Plant Soil 431(1–2):333–345

    Google Scholar 

  • McKee MS, Filser J (2016) Impacts of metal-based engineered nanomaterials on soil communities. Environ Sci Nano 3(3):506–533

    Google Scholar 

  • McManus P, Hortin J, Anderson AJ, Jacobson AR, Britt DW, Stewart J, McLean JE (2018) Rhizosphere interactions between copper oxide nanoparticles and wheat root exudates in a sand matrix: influences on copper bioavailability and uptake. Environ Toxicol Chem 37(10):2619–2632

    Google Scholar 

  • Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Safe 88:48–54

    Google Scholar 

  • Mishra S, Singh HB (2015) Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Appl Microbiol Biotechnol 99:1097–1107

    Google Scholar 

  • Mishra S, Keswani C, Abhilash PC, Fraceto LF, Singh HB (2017a) Integrated approach of agri-nanotechnology: challenges and future trends. Front Plant Sci 8:471

    Google Scholar 

  • Mishra S, Singh BR, Naqvi AH, Singh HB (2017b) Potential of biosynthesized silver nanoparticles using Stenotrophomonas sp. BHU-S7 (MTCC 5978) for management of soil-borne and foliar phytopathogens. Sci Rep 7:45154

    Google Scholar 

  • Moll J, Gogos A, Bucheli TD, Widmer F, van der Heijden MG (2016) Effect of nanoparticles on red clover and its symbiotic microorganisms. J Nanobiotechnol 14(1):36

    Google Scholar 

  • Montanarella L (2015) Agricultural policy: govern our soils. Nat News 528(7580):32

    Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453

    Google Scholar 

  • Nanomaterials Market—Global Opportunity Analysis and Industry Forecast, 2014–2022. Allied Market Research, September 2016

  • PEN (2013) The Project on emerging nanotechnologies. http://www.nanotechproject.org/

  • Qian H, Peng X, Han X, Ren J, Sun L, Fu Z (2013) Comparison of the toxicity of silver nanoparticles and silver ion on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25:1947–1956

    Google Scholar 

  • Raffi MM, Husen A (2019) Impact of fabricated nanoparticles on the rhizospheric microorganisms and soil environment. In: Husen A, Iqbal M (eds) Nanomaterials and plant potential. Springer, Basel, pp 529–552

    Google Scholar 

  • Reinsch BC, Levard C, Li Z, Ma R, Wise A, Gregory KB, Brown GE Jr, Lowry GV (2012) Sulfidation of silver nanoparticles decreases Escherichia coli growth inhibition. Environ Sci Technol 46(13):6992–7000

    Google Scholar 

  • Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:815

    Google Scholar 

  • Ruttkay-Nedecky B, Krystofova O, Nejdl L, Adam V (2017) Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol 15(1):33

    Google Scholar 

  • Schlich K, Hund-Rinke K (2015) Influence of soil properties on the effect of silver nanomaterials on microbial activity in five soils. Environ Pollut 196:321–330

    Google Scholar 

  • Servin AD, Pagano L, Castillo-Michel H, De la Torre-Roche R, Hawthorne J, Hernandez-Viezcas JA, Loredo-Portales R, Majumdar S, Gardea-Torresday J, Dhankher OP, White JC (2017) Weathering in soil increases nanoparticle CuO bioaccumulation within a terrestrial food chain. Nanotoxicol 11(1):98–111

    Google Scholar 

  • Shah V, Collins D, Walker VK, Shah S (2014) The impact of engineered cobalt, iron, nickel and silver nanoparticles on soil bacterial diversity under field conditions. Environ Res Lett 9(2):024001

    Google Scholar 

  • Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233

    Google Scholar 

  • Shin Y-J, Kwak JI, An Y-J (2012) Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes. Chemosphere 88:524–529

    Google Scholar 

  • Shoults-Wilson WA, Reinsch BC, Tsyusko OV, Bertsch PM, Lowry GV, Unrine JM (2011) Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soils Sci Soc Am J 75:365–377

    Google Scholar 

  • Simonin M, Guyonnet JP, Martins JM, Ginot M, Richaume A (2015) Influence of soil properties on the toxicity of TiO2 nanoparticles on carbon mineralization and bacterial abundance. J Hazard Mater 283:529–535

    Google Scholar 

  • Simonin M, Cantarel AAM, Crouzet A, Gervaix J, Martins JMF, Richaume A (2018) Negative effects of copper oxide nanoparticles on carbon and nitrogen cycle microbial activities in contrasting agricultural soils and in presence of plants. Front Microbiol 9:3102

    Google Scholar 

  • Sun TY, Gottschalk F, Hungerbuhler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76

    Google Scholar 

  • Taghavi SM, Momenpour M, Azarian M, Ahmadian M, Souri F, Taghavi SA, Sadeghain M, Karchani M (2013) Effects of nanoparticles on the environment and outdoor workplaces. Electron Physician 5(4):706–712

    Google Scholar 

  • Thunugunta T, Reddy AC, Seetharamaiah SK, Hunashikatti LR, Chandrappa SG, Kalathil NC, Reddy LRDC (2018) Impact of Zinc oxide nanoparticles on eggplant (S. melongena): studies on growth and the accumulation of nanoparticles. IET Nanobiotechnol 12(6):706–713

    Google Scholar 

  • Tourinho PS, Van Gestel CA, Lofts S, Svendsen C, Soares AM, Loureiro S (2012) Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31(8):1679–1692

    Google Scholar 

  • Unrine JM, Shoults-Wilson WA, Zhurbich O, Bertsch PM, Tsyusko OV (2012) Trophic transfer of Au nanoparticles from soil along a simulated terrestrial food chain. Environ Sci Technol 46(17):9753–9760

    Google Scholar 

  • VandeVoort AR, Arai Y (2012) Effect of silver nanoparticles on soil denitrification kinetics. Ind Biotechnol 8(6):358–364

    Google Scholar 

  • Vannini C, Domingo G, Onelli E, Prinsi B, Marsoni M, Espen L, Bracale M (2013) Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS ONE 8(7):e68752

    Google Scholar 

  • Vannini C, Domingo G, Onelli E, De Mattia F, Bruni I, Marsoni M, Bracale M (2014) Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol 171(13):1142–1148

    Google Scholar 

  • Velicogna JR, Ritchie EE, Scroggins RP, Princz JI (2016) A comparison of the effects of silver nanoparticles and silver nitrate on a suite of soil dwelling organisms in two field soils. Nanotoxicol 10(8):1144–1151

    Google Scholar 

  • Velicogna JR, Schwertfeger DM, Jesmer AH, Scroggins RP, Princz JI (2017) The bioaccumulation of silver in Eisenia andrei exposed to silver nanoparticles and silver nitrate in soil. NanoImpact 6:11–18

    Google Scholar 

  • Waalewijn-Kool PL, Rupp S, Lofts S, Svendsen C, van Gestel CA (2014) Effect of soil organic matter content and pH on the toxicity of ZnO nanoparticles to Folsomia candida. Ecotoxicol Environ Saf 108:9–15

    Google Scholar 

  • Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang Q, Schnoor JL, Colvin VL, Braam J, Alvarez PJ (2013) Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47:5442–5449

    Google Scholar 

  • Wang P, Menzies NW, Dennis PG, Guo J, Forstner C, Sekine R, Lombi E, Kappen P, Bertsch PM, Kopittke PM (2016a) Silver nanoparticles entering soils via the wastewater–sludge–soil pathway poses low risk to plants but elevated Cl concentrations increase Ag bioavailability. Environ Sci Technol 50(15):8274–8281

    Google Scholar 

  • Wang X, Yang X, Chen S, Li Q, Wang W, Hou C, Gao X, Wang L, Wang S (2016b) Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front Plant Sci 6:1243

    Google Scholar 

  • Wang XP, Li QQ, Pei ZM, Wang SC (2018) Effects of zinc oxide nanoparticles on the growth, photosynthetic traits, and antioxidative enzymes in tomato plants. Biol Plant 62(4):801–808

    Google Scholar 

  • Werlin R, Priester JH, Mielke RE, Krämer S, Jackson S, Stoimenov PK, Stucky GD, Cherr GN, Orias E, Holden PA (2011) Biomagnification of cadmium selenide quantum dots in a simple experimental microbial food chain. Nat Nanotechnol 6(1):65

    Google Scholar 

  • Wirth SM, Lowry GV, Tilton RD (2012) Natural organic matter alters biofilm tolerance to silver nanoparticles and dissolved silver. Environ Sci Technol 46:12687–12696

    Google Scholar 

  • **e P, Yang ST, He T, Yang S, Tang XH (2017) Bioaccumulation and toxicity of carbon nanoparticles suspension injection in intravenously exposed mice. Int J Mol Sci 18(12):2562

    Google Scholar 

  • Yang Y, Wang J, **u Z, Alvarez PJ (2013) Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria. Environ Toxicol Chem 32(7):1488–1494

    Google Scholar 

  • Yang YF, Lin YJ, Liao CM (2017) Toxicity-based toxicokinetic/toxicodynamic assessment of bioaccumulation and nanotoxicity of zerovalent iron nanoparticles in Caenorhabditis elegans. Int J Nanomed 12:4607

    Google Scholar 

  • Yang J, Jiang F, Ma C, Rui Y, Rui M, Adeel M, Cao W, **ng B (2018) Alteration of crop yield and quality of wheat upon exposure to silver nanoparticles in a life cycle study. J Agric Food Chem 66(11):2589–2597

    Google Scholar 

  • Yasur J, Rani P (2013) Environmental effects of nanosilver: impact on castor seed germination, seedling growth, and plant physiology. Environ Sci Pollut Res 20:8636–8648

    Google Scholar 

  • Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE 7(10):e47674

    Google Scholar 

  • Zhao X, Yu M, Xu D, Liu A, Hou X, Hao F, Long Y, Zhou Q, Jiang G (2017) Distribution, bioaccumulation, trophic transfer, and influences of CeO2 nanoparticles in a constructed aquatic food web. Environ Sci Technol 51(9):5205–5214

    Google Scholar 

  • Zheng L, Hong FS, Lu SP, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:8391

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support provided by National Natural Science Foundation of China (Grant No. 31700457), China Postdoctoral Science Foundation (Grant No. 2018M631112), CAS President’s International Fellowship Initiative (PIFI) (Grant No. 2019PC0095) awarded to Sandhya Mishra, and Yunnan Applied Basic Research Projects (2016FA017) awarded to **aodong Yang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sandhya Mishra or **aodong Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Singh, H.B. & Yang, X. Creating a global database “Nanomaterials in the soil environment”: future need for the terrestrial ecosystem. Energ. Ecol. Environ. 4, 271–285 (2019). https://doi.org/10.1007/s40974-019-00126-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40974-019-00126-5

Keywords

Navigation