Log in

Numerical assessment of advanced porous tibia implant designs based on different cellular structures

  • Full Research Article
  • Published:
Progress in Additive Manufacturing Aims and scope Submit manuscript

Abstract

The rise of additive manufacturing gave hope to the design of orthopedic implants with comparable performance to natural human bone. The current research provides a numerical evaluation of the mechanical performance of three different Ti6Al4V cellular tibia implant designs. The investigated structures are face-centered cubic with vertical Z strut (FCCZ), reentrant and rhombic dodecahedron. Porous structures were designed with a pore size of 800 µm for bone ingrowth which improves implant fixation and osseo-integration. Porous stems were found to increase stress on the bone surface under the tibia tray accompanied by reducing both shear stress at the stem–bone interface and stress at the stem tip. Finally, proof-of-concept porous models 3D printed using Phrozen Shuffle XL demonstrated the manufacturability. A scanning electron microscope was used to measure the average pore sizes and the average strut sizes of the cellular microstructure to verify conformance to design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Enab TA, Bondok NE (2013) Material selection in the design of the tibia tray component of cemented artificial knee using finite element method. Mater Des 44:454–460. https://doi.org/10.1016/j.matdes.2012.08.017

    Article  Google Scholar 

  2. AJRR (2020) The Seventh Annual Report of the AJRR on hip and knee arthroplasty. aaos.org/AJRRannualreport

  3. Yao C, Lu J, Webster TJ (2010) Titanium and cobalt-chromium alloys for hips and knees. Biomaterials for Artificial Organs. Elsevier, Netherlands, pp 34–55. https://doi.org/10.1533/9780857090843.1.34

    Chapter  Google Scholar 

  4. Burton HE, Eisenstein NM, Lawless BM et al (2018) The design of additively manufactured lattices to increase the functionality of medical implants. Mater Sci Eng C 2019(94):901–908. https://doi.org/10.1016/j.msec.2018.10.052

    Article  Google Scholar 

  5. Kamath S, Chang W, Shaari E, Bridges A, Campbell A, McGill P (2008) Comparison of peri-prosthetic bone density in cemented and uncemented total knee arthroplasty. Acta Orthop Belg 74(3):354–359

    Google Scholar 

  6. Arabnejad S, Johnston B, Tanzer M, Pasini D (2017) Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J Orthop Res 35(8):1774–1783. https://doi.org/10.1002/jor.23445

    Article  Google Scholar 

  7. Han C, Li Y, Wang Q et al (2017) Continuous functionally graded porous titanium scaffolds manufactured by selective laser melting for bone implants. J Mech Behav Biomed Mater 2018(80):119–127. https://doi.org/10.1016/j.jmbbm.2018.01.013

    Article  Google Scholar 

  8. Ran Q, Yang W, Hu Y et al (2018) Osteogenesis of 3D printed porous Ti6Al4V implants with different pore sizes. J Mech Behav Biomed Mater 84:1–11. https://doi.org/10.1016/j.jmbbm.2018.04.010

    Article  Google Scholar 

  9. Wang L, Kang J, Sun C, Li D, Cao Y, ** Z (2017) Map** porous microstructures to yield desired mechanical properties for application in 3D printed bone scaffolds and orthopaedic implants. Mater Des 133:62–68. https://doi.org/10.1016/j.matdes.2017.07.021

    Article  Google Scholar 

  10. Pałka K, Pokrowiecki R (2018) Porous titanium implants: a review. Adv Eng Mater 20(5):1–18. https://doi.org/10.1002/adem.201700648

    Article  Google Scholar 

  11. Yuan L, Ding S, Wen C (2019) Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: a review. Bioact Mater 4(1):56–70. https://doi.org/10.1016/j.bioactmat.2018.12.003

    Article  Google Scholar 

  12. Gao C, Wang C, ** H et al (2018) Additive manufacturing technique-designed metallic porous implants for clinical application in orthopedics. RSC Adv 8(44):25210–25227. https://doi.org/10.1039/c8ra04815k

    Article  Google Scholar 

  13. Kumaresan T, Gandhinathan R, Ramu M, Ananthasubramanian M (2015) Conceptual design and fabrication of porous structured scaffold for tissue engineering applications. Biomed Res 26(4):S42–S48

    Google Scholar 

  14. Taniguchi N, Fujibayashi S, Takemoto M et al (2016) Effect of pore size on bone ingrowth into porous titanium implants fabricated by additive manufacturing: an in vivo experiment. Mater Sci Eng C 59:690–701. https://doi.org/10.1016/j.msec.2015.10.069

    Article  Google Scholar 

  15. Mazur M, Leary M, Sun S, Vcelka M, Shidid D, Brandt M (2016) Deformation and failure behaviour of Ti-6Al-4V lattice structures manufactured by selective laser melting (SLM). Int J Adv Manuf Technol 84(5–8):1391–1411. https://doi.org/10.1007/s00170-015-7655-4

    Article  Google Scholar 

  16. Eldesouky I, Harrysson O, West H, Elhofy H (2017) Electron beam melted scaffolds for orthopedic applications. Addit Manuf 17:169–175. https://doi.org/10.1016/j.addma.2017.08.005

    Article  Google Scholar 

  17. Cheng XY, Li SJ, Murr LE et al (2012) Compression deformation behavior of Ti-6Al-4V alloy with cellular structures fabricated by electron beam melting. J Mech Behav Biomed Mater 16(1):153–162. https://doi.org/10.1016/j.jmbbm.2012.10.005

    Article  Google Scholar 

  18. Arabnejad Khanoki S, Pasini D (2013) Fatigue design of a mechanically biocompatible lattice for a proof-of-concept femoral stem. J Mech Behav Biomed Mater 22:65–83. https://doi.org/10.1016/j.jmbbm.2013.03.002

    Article  Google Scholar 

  19. Eltlhawy B, Fouda N, Eldesouky I (2021) Numerical Evaluation of a Porous Tibial-Knee Implant using Gyroid Structure. J Biomed Phys Eng. https://doi.org/10.31661/jbpe.v0i0.2005-1116

    Article  Google Scholar 

  20. Tawakol AE, Noha Fouda IE (2021) Comparison of functionally graded hip stem implants with various second-generation titanium alloys. J Appl Comput Mech. https://doi.org/10.22055/JACM.2020.32964.2115

    Article  Google Scholar 

  21. Fouda N, Eltlhawy B, El-Midany T (2015) The effect of using PLA-HA coating on uncemented tibia prosthesis to decrease aseptic loosening and stress shielding. Int J Mech Mechatron Eng 15(6):76–83

    Google Scholar 

  22. Harrysson OLA, Cansizoglu O, Marcellin-Little DJ, Cormier DR, West HA (2008) Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater Sci Eng C 28(3):366–373. https://doi.org/10.1016/j.msec.2007.04.022

    Article  Google Scholar 

  23. Moiduddin K, Al-Ahmari A, Kindi MA, Nasr ESA, Mohammad A, Ramalingam S (2016) Customized porous implants by additive manufacturing for zygomatic reconstruction. Biocybern Biomed Eng 36(4):719–730. https://doi.org/10.1016/j.bbe.2016.07.005

    Article  Google Scholar 

  24. Lai YS, Chen WC, Huang CH, Cheng CK, Chan KK, Chang TK (2015) The effect of graft strength on knee laxity and graft in-situ forces after posterior cruciate ligament reconstruction. PLoS ONE 10(5):1–11. https://doi.org/10.1371/journal.pone.0127293

    Article  Google Scholar 

  25. Bahraminasab M, Sahari BB, Edwards KL, Farahmand F, Hong TS, Naghibi H (2013) Material tailoring of the femoral component in a total knee replacement to reduce the problem of aseptic loosening. Mater Des 52:441–451. https://doi.org/10.1016/j.matdes.2013.05.066

    Article  Google Scholar 

  26. Asiri S, Fouda N, Hedia H (2016) Functionally graded coating material of cementless knee prosthesis. Br J Appl Sci Technol 15(5):1–12. https://doi.org/10.9734/bjast/2016/25618

    Article  Google Scholar 

  27. Navarro M, Michiardi A, Castaño O, Planell JA (2008) Biomaterials in orthopaedics. J R Soc Interface 5(27):1137–1158. https://doi.org/10.1098/rsif.2008.0151

    Article  Google Scholar 

  28. Chahine G, Atharifar H, Smith P, Kovacevic R (2009) Design optimization of a customized dental implant manufactured via Electron Beam Melting®. 20th Annu Int Solid Free Fabr Symp SFF 2009. Published online. p 631–640

  29. Completo A, Fonseca F, Simões JA (2008) Strain shielding in proximal tibia of stemmed knee prosthesis: experimental study. J Biomech 41(3):560–566. https://doi.org/10.1016/j.jbiomech.2007.10.006

    Article  Google Scholar 

  30. Nambu SN, Lewis G (2004) Influences of the temporal nature of the applied load and the tibial baseplate material on the stress distribution in a three-dimensional model of the human knee joint containing a prosthetic replacement. Biomed Mater Eng 14(2):203–217

    Google Scholar 

  31. Enab TA (2012) A comparative study of the performance of metallic and FGM tibia tray components in total knee replacement joints. Comput Mater Sci 53(1):94–100. https://doi.org/10.1016/j.commatsci.2011.09.032

    Article  Google Scholar 

  32. Mangado N, Quevedo C, Lozano L, Suso S, Cerrolaza M (2015) To what extent the combination of stem length and stem inclination do affect the performance of the tibial component in knee implants? Biomed Eng - Appl Basis Commun 27(2):1–11. https://doi.org/10.4015/S1016237215500180

    Article  Google Scholar 

  33. Chong DYR, Hansen UN, Amis AA (2010) Analysis of bone-prosthesis interface micromotion for cementless tibial prosthesis fixation and the influence of loading conditions. J Biomech 43(6):1074–1080. https://doi.org/10.1016/j.jbiomech.2009.12.006

    Article  Google Scholar 

  34. Mattila RH, Laurila P, Rekola J et al (2009) Bone attachment to glass-fibre-reinforced composite implant with porous surface. Acta Biomater 5(5):1639–1646. https://doi.org/10.1016/j.actbio.2009.01.020

    Article  Google Scholar 

  35. El-Zayat BF, Heyse TJ, Fanciullacci N, Labey L, Fuchs-Winkelmann S, Innocenti B (2016) Fixation techniques and stem dimensions in hinged total knee arthroplasty: a finite element study. Arch Orthop Trauma Surg 136(12):1741–1752. https://doi.org/10.1007/s00402-016-2571-0

    Article  Google Scholar 

  36. Barrack RL, Stanley T, Burt M, Hopkins S (2004) The effect of stem design on end-of-stem pain in revision total knee arthroplasty. J Arthroplasty 19(7 SUPPL):119–124. https://doi.org/10.1016/j.arth.2004.06.009

    Article  Google Scholar 

  37. Eldesouky I, Harrysson O, Marcellin-Little DJ, West H, El-Hofy H (2017) Pre-clinical evaluation of the mechanical properties of a low-stiffness cement-injectable hip stem. J Med Eng Technol 41(8):681–691. https://doi.org/10.1080/03091902.2017.1394391

    Article  Google Scholar 

  38. Buechel FF, Pappas MJ (2015) Principles of human joint replacement. Springer, Cham. https://doi.org/10.1007/978-3-319-15311-7

    Book  Google Scholar 

  39. Wang X, Xu S, Zhou S et al (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141. https://doi.org/10.1016/j.biomaterials.2016.01.012

    Article  Google Scholar 

  40. Ataee A, Li Y, Fraser D, Song G, Wen C (2018) Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications. Mater Des 137:345–354. https://doi.org/10.1016/j.matdes.2017.10.040

    Article  Google Scholar 

  41. Ataee A, Li Y, Brandt M, Wen C (2018) Ultrahigh-strength titanium gyroid scaffolds manufactured by selective laser melting (SLM) for bone implant applications. Acta Mater 158:354–368. https://doi.org/10.1016/j.actamat.2018.08.005

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Egypt-Japan University of Science and Technology (E-JUST) for providing the software used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Eldesouky.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

The datasets generated and analyzed during the current study are not publicly available but may be obtained from the corresponding author at reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eltlhawy, B., Fouda, N., El-Midany, T. et al. Numerical assessment of advanced porous tibia implant designs based on different cellular structures. Prog Addit Manuf 8, 807–817 (2023). https://doi.org/10.1007/s40964-022-00358-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40964-022-00358-8

Keywords

Navigation