Log in

Microstructural investigation of variable tungsten reinforcement in copper-based composite microwave castings

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The composite castings of Cu-xW (where; x=5, 10, and 15 wt.%) have been successfully developed by a novel processing route. The concept of microwave hybrid heating is successfully applied in this study and cast samples were developed in a domestic microwave oven with a maximum power of 900 W and at a frequency of 2.45 GHz. The in situ melting and cast samples were developed with in a duration of 07 min of microwave radiation exposure. The microstructure of cast samples developed shows a regular, roughly hexagonal grain growth that resembles cellular proliferation. The recrystallization and grain growth suppression after adding W content in Cu have been revealed. The formation of different phases such as Cu64O and CuWO4 were observed. The Vicker’s microhardness value of composite cast samples was observed to increase more than twice of pure copper cast samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. M. Girish et al., Electrical resistivity and mechanical properties of tungsten carbide reinforced copper alloy composites. Int. J. Compos. Mater. 2(3), 37–43 (2012). https://doi.org/10.5923/j.cmaterials.20120203.04

    Article  CAS  Google Scholar 

  2. A. Bahgat et al., Effect of mold casting parameters in interface properties of iron/copper bimetallic composites based upon an ancient quranic metal matrix composite (QMMC). Int. J. Metalcast. (2023). https://doi.org/10.1007/s40962-023-01066-x

    Article  Google Scholar 

  3. M.K. Aghajanian, M.A. Rocazella, J.T. Burke, S.D. Keck, The fabrication of metal matrix composites by a pressureless infiltration technique. J. Mater. Sci. 26(2), 447–454 (1991). https://doi.org/10.1007/bf00576541

    Article  ADS  CAS  Google Scholar 

  4. BM. Girish, Basawaraj, B. M. Satish, & D R. Somashekar. Electrical Resistivity and Mechanical Properties of Tungsten Carbide Reinforced Copper Alloy Composites. International Journal of Composite Materials, 2(3), 37–43 (2012). https://doi.org/10.5923/j.cmaterials.20120203.04.

  5. S. Althahban et al., The effect of reinforcement preheating temperatures on tribological behavior of advanced quranic metal-matrix composites (QMMC). Materials (2022). https://doi.org/10.3390/ma15020659

    Article  PubMed  PubMed Central  Google Scholar 

  6. M.A. Morris, D.G. Morris, Microstructures and mechanical properties of rapidly solidified CuCr alloys. Acta Metall. 35(10), 2511–2522 (1987). https://doi.org/10.1016/0001-6160(87)90148-9

    Article  CAS  Google Scholar 

  7. Y.F. Lee, S.L. Lee, C.H. Huang, C.K. Lee, Effects of Fe additive on properties of Si reinforced copper matrix composites fabricated by vacuum infiltration. Powder Metall. 44(4), 339–343 (2001). https://doi.org/10.1179/pom.2001.44.4.339

    Article  ADS  CAS  Google Scholar 

  8. S.C. Tjong, K.C. Lau, Abrasive wear behavior of TiB2 particle-reinforced copper matrix composites. Mater. Sci. Eng. A 282(1–2), 183–186 (2000). https://doi.org/10.1016/S0921-5093(99)00752-2

    Article  Google Scholar 

  9. S.C. Tjong, K.C. Lau, Tribological behavior of SiC particle-reinforced copper matrix composites. Mater. Lett. 43(5), 274–280 (2000). https://doi.org/10.1016/S0167-577X(99)00273-6

    Article  CAS  Google Scholar 

  10. S.R. Dong, J.P. Tu, X.B. Zhang, An investigation of the sliding wear behavior of Cu-matrix composite reinforced by carbon nanotubes. Mater. Sci. Eng. A 313(1–2), 83–87 (2001). https://doi.org/10.1016/S0921-5093(01)00963-7

    Article  Google Scholar 

  11. R. Jedamzik, A. Neubrand, J. Rödel, Functionally graded materials by electrochemical processing and infiltration: application to tungsten/copper composites. J. Mater. Sci. 35(2), 477–486 (2000). https://doi.org/10.1023/A:1004735904984

    Article  ADS  CAS  Google Scholar 

  12. H. Nayeb-Hashemi, A. Vaziri, K. Ziemer, Wear resistance of Cu–18 vol.% Nb (P/M) composites. Mater. Sci. Eng. A 478(12), 390–396 (2008). https://doi.org/10.1016/j.msea.2007.06.034

    Article  CAS  Google Scholar 

  13. G. Gusmano, A. Bianco, R. Polini, P. Magistris, G. Marcheselli, Chemical synthesis and sintering behaviour of highly dispersed W/Cu composite powders. J. Mater. Sci. 36(4), 901–907 (2001). https://doi.org/10.1023/A:1004894900840

    Article  ADS  CAS  Google Scholar 

  14. R.M. German, P. Suri, S.J. Park, Review: liquid phase sintering. J. Mater. Sci. 44, 1–39 (2009). https://doi.org/10.1007/s10853-008-3008-0

    Article  ADS  CAS  Google Scholar 

  15. W.F. Wang, Effect of tungsten particle size and copper content on working behaviour of W-Cu alloy electrodes during electro discharge machining. Powder Metall. 40(4), 295–300 (1997). https://doi.org/10.1179/pom.1997.40.4.295

    Article  ADS  CAS  Google Scholar 

  16. T.H. Ihn, S.W. Lee, S.K. Joo, Effect of transition metal addition on liquid phase sintering of W–Cu. Powder Metall. 37(4), 283–288 (1994). https://doi.org/10.1179/pom.1994.37.4.283

    Article  ADS  CAS  Google Scholar 

  17. K. Zhou, W.G. Chen, J.J. Wang, G.J. Yan, Y.Q. Fu, W-Cu composites reinforced by copper-coated graphene prepared using infiltration sintering and spark plasma sintering: a comparative study. Int. J. Refract Metal Hard Mater. 82(April), 91–99 (2019). https://doi.org/10.1016/j.ijrmhm.2019.03.026

    Article  CAS  Google Scholar 

  18. C. Hou, X. Song, F. Tang, Y. Li, L. Cao, J. Wang, Z. Nie, W-Cu composites with submicron- and nanostructures: progress and challenges. NPG Asia Mater. (2019). https://doi.org/10.1038/s41427-019-0179-x

    Article  Google Scholar 

  19. V. Tsakiris, M. Lungu, E. Enescu, D. Pavelescu, G. Dumitrescu, A. Radulian, N. Mocioi, Nanostructured W-Cu electrical contact materials processed by hot isostatic pressing. Acta Phys. Polonica A 125(2), 348–352 (2014). https://doi.org/10.12693/APhysPolA.125.348

    Article  ADS  Google Scholar 

  20. L.L. Dong, M. Ahangarkani, W.G. Chen, Y.S. Zhang, Recent progress in the development of tungsten-copper composites: Fabrication, modification, and applications. Int. J. Refract Metal Hard Mater. 75, 30–42 (2018). https://doi.org/10.1016/j.ijrmhm.2018.03.014

    Article  CAS  Google Scholar 

  21. S.W. Tsai, A. Arteiro, J.D.D. Melo, A trace-based approach to design for manufacturing of composite laminates. J. Reinf. Plast. Compos. 35(7), 589–600 (2016). https://doi.org/10.1177/0731684415624770

    Article  CAS  Google Scholar 

  22. C. Hou, T. Li, T. Zhao, J. Lv, W. Zhang, Y. Ma, Microwave absorption properties of rare metal-doped multi-walled carbon nanotube/polyvinyl chloride composites. J. Reinf. Plast. Compos. 31(22), 1526–1531 (2012). https://doi.org/10.1177/0731684412454198

    Article  ADS  CAS  Google Scholar 

  23. A. Pathania, S. Singh, D. Gupta, V. Jain, Development and analysis of tribological behavior of microwave-processed EWAC + 20% WC10Co2Ni composite cladding on a mild steel substrate. J. Manuf. Process. 20, 79–87 (2015). https://doi.org/10.1016/j.jmapro.2015.09.007

    Article  Google Scholar 

  24. M. Garetti, M. Taisch, Sustainable manufacturing: trends and research challenges. Prod. Plan. Control 23(2–3), 83–104 (2011). https://doi.org/10.1080/09537287.2011.591619

    Article  Google Scholar 

  25. I. Deiab, On energy efficient and sustainable machining through hybrid processes. Mater. Manuf. Processes 29(11–12), 1338–1345 (2014). https://doi.org/10.1080/10426914.2014.921706

    Article  CAS  Google Scholar 

  26. S. Singh, D. Gupta, V. Jain, A.K. Sharma, Microwave processing of materials and applications in manufacturing industries: a review. Mater. Manuf. Processes 30(1), 1–29 (2015). https://doi.org/10.1080/10426914.2014.952028

    Article  CAS  Google Scholar 

  27. S. Singh, D. Gupta, V. Jain, Microwave melting and processing of metal–ceramic composite castings. Proc. Inst. Mech. Eng. B J. Eng. Manuf. 232(7), 1235–1243 (2018). https://doi.org/10.1177/0954405416666900

    Article  CAS  Google Scholar 

  28. S.C. Bhatt, N.D. Ghetiya, Review on effect of tooling parameters on microwave processing of metallic materials with special emphasis on melting/casting application. Inter. Metalcast. 16, 2097–2127 (2022). https://doi.org/10.1007/s40962-021-00743-z

    Article  Google Scholar 

  29. V. Gangwar, H. Singh, Influence of process parameter on microstructure, residual stress, microhardness and porosity of AA-6063 microwave cast. Int. J. Metalcast. (2021). https://doi.org/10.1007/s40962-021-00638-z

    Article  Google Scholar 

  30. S. Kaushal, Microstructure and tribological characterization of composite castings developed through in-situ microwave hybrid heating. Inter. Metalcast. 16, 2150–2161 (2022). https://doi.org/10.1007/s40962-022-00757-1

    Article  CAS  Google Scholar 

  31. S.S. Gajmal, D.N. Raut, An investigation on wear behaviour of ASTM B23 tin-based babbitt alloy developed through microwave-assisted casting. Inter. Metalcast. 16, 1995–2013 (2022). https://doi.org/10.1007/s40962-021-00721-5

    Article  Google Scholar 

  32. R.R. Mishra, A.K. Sharma, Microwave–material interaction phenomena: heating mechanisms, challenges and opportunities in material processing. Compos. A Appl. Sci. Manuf. 81, 78–97 (2016). https://doi.org/10.1016/j.compositesa.2015.10.035

    Article  CAS  Google Scholar 

  33. M.S. Srinath, A.K. Sharma, P. Kumar, A new approach to joining of bulk copper using microwave energy. Mater. Des. 32(5), 2685–2694 (2011). https://doi.org/10.1016/j.matdes.2011.01.023

    Article  CAS  Google Scholar 

  34. A. Bansal, A.K. Sharma, P. Kumar, S. Das, Characterization of bulk stainless-steel joints developed through microwave hybrid heating. Mater Charact 91, 34–41 (2014). https://doi.org/10.1016/j.matchar.2014.02.005

    Article  CAS  Google Scholar 

  35. D. Gupta, A.K. Sharma, Copper coating on austenitic stainless steel using microwave hybrid heating. Proc. Inst. Mech. Eng. E: J. Process Mech. Eng. 226(2), 132–141 (2012). https://doi.org/10.1177/0954408911414652

    Article  CAS  Google Scholar 

  36. D. Gupta, A.K. Sharma, Investigation on sliding wear performance of WC10Co2Ni cladding developed through microwave irradiation. Wear 271(9–10), 1642–1650 (2011). https://doi.org/10.1016/j.wear.2010.12.037

    Article  CAS  Google Scholar 

  37. D. Gupta, P.M. Bhovi, A.K. Sharma, S. Dutta, Development and characterization of microwave composite cladding. J. Manuf. Process. 14(3), 243–249 (2012). https://doi.org/10.1016/j.jmapro.2012.05.007

    Article  Google Scholar 

  38. R.R. Mishra, A.K. Sharma, A review of research trends in microwave processing of metal-based materials and opportunities in microwave metal casting. Crit. Rev. Solid State Mater. Sci. 41(3), 217–255 (2016). https://doi.org/10.1080/10408436.2016.1142421

    Article  ADS  CAS  Google Scholar 

  39. S. Kaushal et al., On processing and characterization of Cu–Mo-based castings through microwave heating. Int. J. Metalcast. 15(2), 530–537 (2021). https://doi.org/10.1007/s40962-020-00481-8

    Article  CAS  Google Scholar 

  40. S. Singh, Fabricating in situ powdered nickel—Alumina metal matrix composites through microwave heating process: a sustainable approach. Int. J. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00536-w

    Article  Google Scholar 

  41. R.R. Mishra, A.K. Sharma, Effect of solidification environment on microstructure and indentation hardness of Al–Zn–Mg alloy casts developed using microwave heating. Int. J. Metalcast. 12(2), 370–382 (2017). https://doi.org/10.1007/s40962-017-0176-1

    Article  CAS  Google Scholar 

  42. Pal, Jatinder, et al. “Processing and Characterization of SS316 Based Metal Matrix Composite Casting through Microwave Hybrid Heating.” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 1996, no. May, 2022, doi:https://doi.org/10.1177/09544062221104443

  43. M.S. Lingappa, M.S. Srinath, H.J. Amarendra, Melting of 60Sn40Pb alloy using microwave energy and its characterization. Mater. Today: Proc. 4(2), 471–476 (2017). https://doi.org/10.1016/j.matpr.2017.01.047

    Article  Google Scholar 

  44. S. Bansal, J. Mago, D. Gupta, V. Jain, Parametric optimization and analysis of cavitation erosion behavior of Ni-based + 10WC microwave processed composite clad using Taguchi approach. Surface Topography: Metrol. Prop. 9, 10 (2021). https://doi.org/10.1088/2051-672X/abda94

    Article  CAS  Google Scholar 

  45. S. Singh, D. Gupta, V. Jain, Novel microwave composite casting process: theory, feasibility and characterization. Mater. Des. 111, 51–59 (2016). https://doi.org/10.1016/j.matdes.2016.08.071

    Article  CAS  Google Scholar 

  46. C. Li et al., Hardness and thermal conductivity of Cu-carbon composites by using different carbon-based fillers. Results Phys. 33, 105157 (2022). https://doi.org/10.1016/j.rinp.2021.105157

    Article  Google Scholar 

  47. P. Yadav et al., Development of copper based composite by stir casting technique. Mater. Today: Proc. 25, 649–653 (2019). https://doi.org/10.1016/j.matpr.2019.07.669

    Article  CAS  Google Scholar 

  48. F. Nazeer et al., Higher mechanical and thermal properties of Cu-RGO composites. Vacuum 180, 109584 (2020). https://doi.org/10.1016/j.vacuum.2020.109584

    Article  ADS  CAS  Google Scholar 

  49. X. Li et al., Influence evaluation of tungsten content on microstructure and properties of Cu–W composite. Metals (2022). https://doi.org/10.3390/met12101668

    Article  Google Scholar 

  50. X. Li et al., Microstructure and high-temperature mechanical properties of Cu–W composite prepared by hot isostatic pressing. J. Alloys Compd. 970, 172571 (2024). https://doi.org/10.1016/j.jallcom.2023.172571

    Article  CAS  Google Scholar 

  51. D. Gupta, A.K. Sharma, Development and microstructural characterization of microwave cladding on austenitic stainless steel. Surface Coat. Technol. 205(21–22), 5147–5155 (2011). https://doi.org/10.1016/j.surfcoat.2011.05.01

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Bashir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, K., Gupta, D. & Jain, V. Microstructural investigation of variable tungsten reinforcement in copper-based composite microwave castings. Inter Metalcast (2024). https://doi.org/10.1007/s40962-024-01262-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-024-01262-3

Keywords

Navigation