Log in

Dual Modification of Hypereutectic Al–Si Alloy and Spheroidization Mechanism of Primary Silicon with Eu Addition

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The effects of Eu addition on the silicon phase and mechanical properties of hypereutectic Al–16Si alloys have been investigated using optical microscopy, scanning electron microscopy, electron probe microanalysis map**, and high-angle annular dark-field scanning transmission electron microscopy. In addition, the mechanism of spheroidization of the primary silicon was studied. The addition of 0.8% Eu generated a refined spheroidal primary silicon and a fibrous eutectic silicon in the hypereutectic Al–16Si alloys. The ultimate tensile strength and elongation were increased by 16.26% and 166%, respectively. The refinement of the primary silicon was caused by a constitutional undercooling of the Eu element. The spheroidization of primary silicon can be attributed to an impurity induced twinning mechanism and a poisoning of the twin plane re-entrant due to the adsorption of Eu at the parallel twins, intersection twins and 141° twin plane re-entrant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. M.M. Haque, A. Sharif, Study on wear properties of aluminium–silicon piston alloy. J. Mater. Process. Technol. 118(1–3), 69–73 (2001). https://doi.org/10.1016/S0924-0136(01)00869-X

    Article  CAS  Google Scholar 

  2. J. Li, M. Elmadagli, V.Y. Gertsman, J. Lo, A.T. Alpas, FIB and TEM characterization of subsurfaces of an Al–Si alloy (A390) subjected to sliding wear. Mater. Sci. Eng., A 421(1–2), 317–327 (2006). https://doi.org/10.1016/j.msea.2006.01.084

    Article  CAS  Google Scholar 

  3. J. Jorstad, D. Apelian, Hypereutectic Al–Si Alloys: practical casting considerations. Int. J. Metalcast. 3, 13–36 (2009). https://doi.org/10.1007/BF03355450

    Article  CAS  Google Scholar 

  4. L. Zhang, S.Y. Chen, Q.C. Li, G.W. Chang, Formation mechanism and conditions of fine primary silicon being uniformly distributed on single αAl matrix in Al–Si alloys. Mater. Des. 193, 108853 (2020). https://doi.org/10.1016/j.matdes.2020.108853

    Article  CAS  Google Scholar 

  5. C.L. Xu, Q.C. Jiang, Morphologies of primary silicon in hypereutectic Al–Si alloys with melt overheating temperature and cooling rate. Mater. Sci. Eng., A 437(2), 451–455 (2006). https://doi.org/10.1016/j.msea.2006.07.088

    Article  CAS  Google Scholar 

  6. M.M. Shehata, S. El-Hadad, M.E. Moussa et al., The combined effect of cooling slope plate casting and mold vibration on microstructure, hardness and wear behavior of Al–Si alloy (A390). Inter Metalcast 15, 763–779 (2021). https://doi.org/10.1007/s40962-020-00497-0

    Article  CAS  Google Scholar 

  7. F. Mao, Y. Qiao, P. Zhang et al., Modification mechanism of rare earth Eu on eutectic Si in hypoeutectic Al–Si alloy. Int. J. Metalcast. (2021). https://doi.org/10.1007/s40962-021-00626-3

    Article  Google Scholar 

  8. M.F. Ibrahim, M.H. Abdelaziz, A.M. Samuel et al., Effect of rare earth metals on the mechanical properties and fractography of Al–Si-based alloys. Int. J. Metalcast. 14, 108–124 (2020). https://doi.org/10.1007/s40962-019-00336-x

    Article  CAS  Google Scholar 

  9. C.Y. Li, F. Liu, F.X. Yu, H.R. Qiao, D.P. Zheng, Q.C. Le, The growth mechanism and morphology evolution of primary Si during slow cooling solidification of high purity Al–15Si alloy with Cr additions. J. Market. Res. (2023). https://doi.org/10.1016/j.jmrt.2023.01.034

    Article  Google Scholar 

  10. H. Tahiri, A.M. Samuel, H.W. Doty et al., Effect of Sr–grain refiner–Si interactions on the microstructure characteristics of Al–Si hypereutectic alloys. Int. J. Metalcast. 12, 307–320 (2018). https://doi.org/10.1007/s40962-017-0164-5

    Article  CAS  Google Scholar 

  11. G. Sigworth, J. Campbell, J. Jorstad, The modification of Al–Si casting alloys: important practical and theoretical aspects. Int. J. Metalcast. 3, 65–78 (2009). https://doi.org/10.1007/BF03355442

    Article  CAS  Google Scholar 

  12. G.K. Sigworth, T.A. Kuhn, Grain refinement of aluminum casting alloys. Int. J. Metalcast. 1, 31–40 (2007). https://doi.org/10.1007/BF03355416

    Article  CAS  Google Scholar 

  13. G.K. Sigworth, The modification of Al–Si casting alloys: important practical and theoretical aspects. Int. J. Metalcast. 2, 19–40 (2008). https://doi.org/10.1007/BF03355425

    Article  CAS  Google Scholar 

  14. S. Ashkvary, S.G. Shabestari, F. Yavari, Effect of cooling rate on the microstructure and solidification characteristics of Al–20%Mg2Si in situ composites using computer-aided thermal analysis technique. Int. J. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00771-3

    Article  Google Scholar 

  15. Q.L. Li, T.D. **a, Y.F. Lan, W.J. Zhan, L. Fan, P.F. Li, Effect of rare earth cerium addition on the microstructure and tensile properties of hypereutectic Al–20% Si alloy. J. Alloy. Compd. 562, 25–32 (2013). https://doi.org/10.1016/j.jallcom.2013.02.016

    Article  CAS  Google Scholar 

  16. S.M. Liang, R. Schmid-Fetzer, Phosphorus in Al–Si cast alloys: Thermodynamic prediction of the AlP and eutectic (Si) solidification sequence validated by microstructure and nucleation undercooling data. Acta Mater. 72, 41–56 (2014). https://doi.org/10.1016/j.actamat.2014.02.042

    Article  CAS  Google Scholar 

  17. X.Z. Zhu, S.H. Wang, X.X. Dong, X.F. Liu, S.X. Ji, Morphologically templated nucleation of primary Si on AlP in hypereutectic Al–Si alloys. J. Mater. Sci. Technol. 100, 36–45 (2022). https://doi.org/10.1016/j.jmst.2021.06.009

    Article  CAS  Google Scholar 

  18. M. Çalış, A.P. Hekimoğlu, Effect of strontium additions on the microstructural and mechanical properties of Al–17Si–4Cu–0.6 Mg–3Zn (B390+ 2 wt% Zn) alloy. Int. J. Metalcast. (2022). https://doi.org/10.1007/s40962-022-00755-3

    Article  Google Scholar 

  19. M. Zuo, D.G. Zhao, X.Y. Teng, H.R. Geng, Z.S. Zhang, Effect of P and Sr complex modification on Si phase in hypereutectic Al–30Si alloys. Mater. Des. 47, 857–864 (2013). https://doi.org/10.1016/j.matdes.2012.12.054

    Article  CAS  Google Scholar 

  20. H. Choi, X. Li, Refinement of primary Si and modification of eutectic Si for enhanced ductility of hypereutectic Al–20Si–45Cu alloy with addition of Al2O3 nanoparticles. J. Mater. Sci. 47, 3096–3102 (2012). https://doi.org/10.1007/s10853-011-6143-y

    Article  CAS  Google Scholar 

  21. Q.L. Li, T.D. **a, Y.F. Lan, W.J. Zhao, L. Fan, P.F. Li, Effect of in situ γ-Al2O3 particles on the microstructure of hypereutectic Al–20% Si alloy. J. Alloy. Compd. 577, 232–236 (2013). https://doi.org/10.1016/j.jallcom.2013.04.043

    Article  CAS  Google Scholar 

  22. Q.L. Li, T.D. **a, Y.F. Lan, P.F. Li, L. Fan, Effects of rare earth Er addition on microstructure and mechanical properties of hypereutectic Al–20%Si alloy. Mater. Sci. Eng., A 588, 97–102 (2013). https://doi.org/10.1016/j.msea.2013.09.017

    Article  CAS  Google Scholar 

  23. Q.L. Li, J.B. Li, B.Q. Li, Y.F. Lan, T.D. **a, Effect of samarium (Sm) addition on the microstructure and tensile properties of Al–20%Si casting alloy. Int. J. Metalcast. 12, 554–564 (2018). https://doi.org/10.1007/s40962-017-0193-0

    Article  CAS  Google Scholar 

  24. Q.L. Li, J.B. Li, B.Q. Li, Y.Q. Zhu, D.X. Liu, Y.F. Lan, S. Wang, Mechanical properties and microstructural evolution of Yb-modified Al–20%Si alloy. J. Mater. Eng. Perform. 27, 3498–3507 (2018). https://doi.org/10.1007/s11665-018-3456-x

    Article  CAS  Google Scholar 

  25. M. Zuo, D.G. Zhao, Z.Q. Wang, H.R. Geng, Complex modification of hypereutectic Al–Si alloy by a new Al-YP master alloy. Met. Mater. Int. 21, 646–651 (2015). https://doi.org/10.1007/s12540-015-4535-2

    Article  CAS  Google Scholar 

  26. M.F. Kilicaslan, W.R. Lee, T.H. Lee, Y. Sohn, S.J. Hong, Effect of Sc addition on the microstructure and mechanical properties of as-atomized and extruded Al–20Si alloys. Mater. Lett. 71, 164–167 (2012). https://doi.org/10.1016/j.matlet.2011.12.050

    Article  CAS  Google Scholar 

  27. J. Rakhmonov, G. Timelli, G. Basso, Interaction of Ca, P trace elements and Sr modification in AlSi5Cu1Mg alloys. J. Therm. Anal. Calorim. 133, 123–133 (2018). https://doi.org/10.1007/s10973-018-7111-4

    Article  CAS  Google Scholar 

  28. M.G. Day, A. Hellawell, The microstructure and crystallography of aluminium—silicon eutectic alloys. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 305(1483), 473–491 (1968). https://doi.org/10.1098/rspa.1968.0128

    Article  CAS  Google Scholar 

  29. S.Z. Lu, A. Hellawell, The mechanism of silicon modification in aluminum-silicon alloys: impurity induced twinning. Metall. Trans. A 18(10), 1721–1733 (1987). https://doi.org/10.1098/rspa.1968.0128

    Article  Google Scholar 

  30. S.Z. Lu, A. Hellawell, Growth mechanisms of silicon in Al–Si alloys. J. Cryst. Growth 73(2), 316–328 (1985). https://doi.org/10.1016/0022-0248(85)90308-2

    Article  CAS  Google Scholar 

  31. J. Barrirero, J.H. Li, M. Engstler, N. Ghafoor, P. Schumacher, M. Odén, F. Mücklich, Cluster formation at the Si/liquid interface in Sr and Na modified Al–Si alloys. Scripta Mater. 117, 16–19 (2016). https://doi.org/10.1016/j.scriptamat.2016.02.018

    Article  CAS  Google Scholar 

  32. J.H. Li, X.D. Wang, T.H. Ludwig, Y. Tsunekawa, L. Arnberg, J.Z. Jiang, P. Schumacher, Modification of eutectic Si in Al–Si alloys with Eu addition. Acta Mater. 84, 153–163 (2015). https://doi.org/10.1016/j.actamat.2014.10.064

    Article  CAS  Google Scholar 

  33. J.H. Li, F. Hage, M. Wiessner, L. Romaner, D. Scheiber, B. Sartory, Q. Ramasse, P. Schumacher, The roles of Eu during the growth of eutectic Si in Al–Si alloys. Sci. Rep. 5(1), 1–10 (2015). https://doi.org/10.1038/srep13802

    Article  Google Scholar 

  34. K. Nogita, S.D. McDonald, A.K. Dahle, Eutectic modification of Al–Si alloys with rare earth metals. Mater. Trans. 45(2), 323–326 (2004). https://doi.org/10.2320/matertrans.45.323

    Article  CAS  Google Scholar 

  35. L. Chang, Y.M. Ding, B.X. Guo, J. Ding, X.C. **a, Y. Tang, C. Li, X.M. Sun, J.J. Guo, K.H. Song, L.S. Wang, K.P. Zhou, X.G. Chen, Y.C. Liu, Modification mechanism and tensile property of Al–9Si–0.4Mg–0.1Cu alloy. Mater. Charact. 184, 111693 (2022). https://doi.org/10.1016/j.matchar.2021.111693

    Article  CAS  Google Scholar 

  36. F. Mao, G.Y. Yan, Z.J. Xuan, Z.Q. Cao, T.M. Wang, Effect of Eu addition on the microstructures and mechanical properties of A356 aluminum alloys. J. Alloys Compd. 650, 896–906 (2015). https://doi.org/10.1016/j.jallcom.2015.06.266

    Article  CAS  Google Scholar 

  37. J.S. Rao, J. Zhang, R.X. Liu, J. Zheng, D.D. Yin, Modification of eutectic Si and the microstructure in an Al–7Si alloy with barium addition. Mater. Sci. Eng., A 728, 72–79 (2018). https://doi.org/10.1016/j.msea.2018.05.010

    Article  CAS  Google Scholar 

  38. X.C. **a, Q.F. Zhao, Y.Y. Peng, P. Zhang, L.H. Liu, J. Ding, X.D. Luo, L.S. Wang, L.X. Huang, H.J. Zhang, X.G. Chen, Precipitation behavior and mechanical performances of A3562 alloy treated by Al–Sr–La composite refinement-modification agent. J Alloys Compd. 818, 153370 (2020). https://doi.org/10.1016/j.jallcom.2019.153370

    Article  CAS  Google Scholar 

  39. Q. Cai, C.L. Mendis, I.T.H. Chang, Z.Y. Fan, Microstructure evolution and mechanical properties of new die-cast Al–Si–Mg–Mn alloys. Mater. Des. 187, 108394 (2020). https://doi.org/10.1016/j.matdes.2019.108394

    Article  CAS  Google Scholar 

  40. W.X. Shi, B. Gao, G.F. Tu, S.W. Li, Effect of Nd on microstructure and wear resistance of hypereutectic Al–20% Si alloy. J. Alloy. Compd. 508(2), 480–485 (2010). https://doi.org/10.1016/j.jallcom.2010.08.098

    Article  CAS  Google Scholar 

  41. M. Albu, A. Pal, C. Gspan, R.C. Picu, F. Hofer, G. Kothleitner, Self-organized Sr leads to solid state twinning in nano-scaled eutectic Si phase. Sci. Rep. 6(1), 1–7 (2016). https://doi.org/10.1038/srep31635

    Article  CAS  Google Scholar 

  42. J.H. Li, F.S. Hage, X.F. Liu, Q. Ramasse, P. Schumacher, Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al–Si alloys. Sci. Rep. 6(1), 1–8 (2016). https://doi.org/10.1038/srep25244

    Article  CAS  Google Scholar 

  43. X.Z. Zhu, S.H. Wang, X.X. **, X.F. Liu, S.X. Ji, Morphologically templated nucleation of primary Si on AlP in hypereutectic Al–Si alloys. J. Mater. Sci. Technol. 100, 36–45 (2022). https://doi.org/10.1016/j.jmst.2021.06.009

    Article  CAS  Google Scholar 

  44. C. Sumalatha, P.C. Rao, V.S. Rao, M.S.K. Deepak, Effect of grain refiner, modifier and graphene on the mechanical properties of hypereutectic Al–Si alloys by experimental and numerical investigation. Mater. Today: Proc. 62, 3891–3900 (2022). https://doi.org/10.1016/j.matpr.2022.04.544

    Article  CAS  Google Scholar 

  45. P. Yan, Y. Liu, W. Mao et al., Effect of antimony on the microstructure evolution and mechanical properties of hypereutectic Al–Si rheological high pressure die casting alloy. Int. J. Metalcast. (2021). https://doi.org/10.1007/s40962-021-00718-0

    Article  Google Scholar 

  46. F. Mao, L. Ou, Y. Qiao et al., Comparison of silicon phase in Al–20Si Alloys and Zn–27Al–3Si alloys with strontium addition. Int. J. Metalcast. 15, 1260–1274 (2021). https://doi.org/10.1007/s40962-020-00551-x

    Article  CAS  Google Scholar 

  47. G.K. Sigworth, R.J. Donahue, The metallurgy of aluminum alloys for structural high-pressure die castings. Int. J. Metalcast. (2020). https://doi.org/10.1007/s40962-020-00535-x

    Article  Google Scholar 

  48. J. Scepanovic, V. Asanovic, S. Herenda et al., Microstructural characteristics, mechanical properties, fracture analysis and corrosion behavior of hypereutectic Al–13.5Si alloy. Int. J. Metalcast. 13, 700–714 (2019). https://doi.org/10.1007/s40962-019-00315-2

    Article  CAS  Google Scholar 

  49. J. Wang, Z. Guo, W.X. Hu, J.C. Li, S.M. **ong, On the growth mechanism of the primary silicon particle in a hypereutectic Al-20 wt% Si alloy using synchrotron X-ray tomography. Mater. Des. 137, 176–183 (2018). https://doi.org/10.1016/j.matdes.2017.09.062

    Article  CAS  Google Scholar 

  50. F. Mao, S.Z. Wei, C. Chen, C. Zhang, X.D. Wang, Z.Q. Cao, Modification of the silicon phase and mechanical properties in Al–40Zn–6Si alloy with Eu addition. Mater. Des. 186, 108268 (2020). https://doi.org/10.1016/j.matdes.2019.108268

    Article  CAS  Google Scholar 

  51. D.L. Shu, The Mechanical Properties of Engineering Materials (China Machine Press, Bei**g, 2004)

    Google Scholar 

Download references

Acknowledgments

The authors thank the Key Scientific and Technological Project of Henan Province (NO. 232102231018), Frontier Exploration Projects of Longmen Laboratory (NO. LMQYTSKT005) and the National Key R&D Program of China (NO. 2020YFB2008400). The authors wish to take this opportunity to thank the support of Provincial and Ministerial Co-construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Mao or Guoshang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Mao, F., Zhang, G. et al. Dual Modification of Hypereutectic Al–Si Alloy and Spheroidization Mechanism of Primary Silicon with Eu Addition. Inter Metalcast (2023). https://doi.org/10.1007/s40962-023-01198-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-023-01198-0

Keywords

Navigation