Log in

Influence of Cooling Rate During Solidification on Microstructural Features and γ′ Size and Morphology in Cast IN939 Superalloy

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The purpose of this research was to investigate the effect of solidification cooling rate on the microstructural characteristics of IN939 superalloy. Microstructure of castings was investigated using X-ray diffraction, optical microscopy and field emission SEM microscopes, and the most important phases in the microstructure, their morphology and micro-mechanisms of formation of these phases were evaluated. In addition, thermodynamic simulation was carried out using JMatPro software to predict the type and amount of phases in different microstructural regions, the chemical compositions of γ and γ′ phases, as well as the γ/γ′ lattice misfits. The results showed that with increasing the cooling rate, MC carbides became more regular and more polygonal, while with decreasing cooling rates, carbides morphologies changed to Chinese script form. At cooling rates around 0.13 °C/s, the γ′ particles in dendrite cores were formed into coarse and cubic patterns, whereas in interdendritic regions, γ′ particles were observed as very coarse and flower-like structures. At cooling rates around 1.1 °C/s, the morphology of γ′ precipitates in the dendrite cores was mainly spherical, and in the interdendritic areas, γ′ precipitates were a mixture of spherical and cubic particles. It was shown that the major factors controlling the morphology of γ′ particles in different regions of the microstructure are the size of these particles combined with the γ/γ′ lattice misfit. Finally, the results showed that the following equation relates the secondary dendrite arm spacing (SDAS) to the solidification cooling rate (SCR) for IN939 superalloy: SDAS = 43.177 (SCR)−0.305.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  1. L. Gong, B. Chen, L. Zhang, Y. Ma, K. Liu, Effect of cooling rate on microstructure, microsegregation and mechanical properties of cast Ni-based superalloy K417G. J. Mater. Sci. Technol. 34, 811–820 (2018). https://doi.org/10.1016/j.jmst.2017.03.023

    Article  CAS  Google Scholar 

  2. Y. Zhang, B. Huang, J. Li, Microstructural evolution with a wide range of solidification cooling rates in a Ni-based superalloy. Metall. Mater. Trans. A 44, 1641–1644 (2013). https://doi.org/10.1007/s11661-013-1645-7

    Article  CAS  Google Scholar 

  3. H.S. Whitesell, L. Li, R.A. Overfelt, Influence of solidification variables on the dendrite arm spacings of Ni-based superalloys. Metall. Mater. Trans. B 31, 546–551 (2000). https://doi.org/10.1007/s11663-000-0162-4

    Article  Google Scholar 

  4. C. Yang, Q. Xu, B. Liu, Primary dendrite spacing selection during directional solidification of multicomponent nickel-based superalloy: multiphase-field study. J. Mater. Sci. 53, 9755–9770 (2018). https://doi.org/10.1007/s10853-018-2236-1

    Article  CAS  Google Scholar 

  5. W. Zhang, L. Liu, X. Zhao, T. Huang, Z. Yu, M. Qu, H. Fu, Effect of cooling rates on dendrite spacings of directionally solidified DZ125 alloy under high thermal gradient. Rare Met. 28, 633–640 (2009). https://doi.org/10.1007/s12598-009-0121-4

    Article  CAS  Google Scholar 

  6. L. Liu, T.W. Huang, J. Zhang, H.Z. Fu, Microstructure and stress rupture properties of single crystal superalloy CMSX-2 under high thermal gradient directional solidification. Mater. Lett. 61, 227–230 (2007). https://doi.org/10.1016/j.matlet.2006.04.037

    Article  CAS  Google Scholar 

  7. M.F. Moreira, L.B. Fantin, C.R.F. Azevedo, Microstructural characterization of Ni-base superalloy as-cast single crystal (CMSX-4). Int. Metalcast. 15, 676–691 (2021). https://doi.org/10.1007/s40962-020-00496-1

    Article  CAS  Google Scholar 

  8. F. Wang, D. Ma, A. Bührig-Polaczek, Microsegregation behavior of alloying elements in single-crystal nickel-based superalloys with emphasis on dendritic structure. Mater Charact 127, 311–316 (2017). https://doi.org/10.1016/j.matchar.2017.02.030

    Article  CAS  Google Scholar 

  9. X. Shi, S. Duan, W. Yang, H. Guo, J. Guo, Effect of cooling rate on microsegregation during solidification of superalloy INCONEL 718 under slow-cooled conditions. Metall. Mater. Trans. B 49, 1883–1897 (2018). https://doi.org/10.1007/s11663-018-1169-z

    Article  CAS  Google Scholar 

  10. V.C.I. Strutt, B.M. Jenkins, J.M. Woolrich, M. Appleton, M.P. Moody, P.A.J. Bagot, Effect of microsegregation and heat treatment on localised γ and γ′ compositions in single crystal Ni-based superalloys. J. Alloys Compd. 949, 169861 (2023). https://doi.org/10.1016/j.jallcom.2023.169861

    Article  CAS  Google Scholar 

  11. M. Mostafaei, S.M. Abbasi, Solutioning and solidification process control in Ta-modified CM247 LC superalloy. J. Mater. Process. Technol. 231, 113–124 (2016). https://doi.org/10.1016/j.jmatprotec.2015.12.021

    Article  CAS  Google Scholar 

  12. M.F. Moreira, L.B. Fantin, F. Beneduce Neto, C.R.F. Azevedo, Microstructural and mechanical characterization of as-cast nickel-based superalloy (IN-713C). Int. Metalcast. 15, 1129–1148 (2021). https://doi.org/10.1007/s40962-020-00540-0

    Article  CAS  Google Scholar 

  13. M.T. La**ton, D.J. Crudden, R.C. Reed, M.P. Moody, P.A.J. Bagot, Characterization of phase chemistry and partitioning in a family of high-strength nickel-based superalloys. Metall. Mater. Trans. A 49, 2302–2310 (2018). https://doi.org/10.1007/s11661-018-4558-7

    Article  CAS  Google Scholar 

  14. H. Yu, Z. Wang, B. Zhang, Y. Ning, M.W. Fu, Re-precipitation mechanisms of the γ′ phase with sphere, near-sphere, cubic, octets and finally-dendrite in as-cast Ni-based superalloys. J. Alloys Compd. 876, 160104 (2021). https://doi.org/10.1016/j.jallcom.2021.160104

    Article  CAS  Google Scholar 

  15. Y.T. Tang, N. D’Souza, B. Roebuck, P. Karamched, C. Panwisawas, D.M. Collins, Ultra-high temperature deformation in a single crystal superalloy: mesoscale process simulation and micromechanisms. Acta Mater. 203, 116468 (2021). https://doi.org/10.1016/j.actamat.2020.11.010

    Article  CAS  Google Scholar 

  16. G. Liu, L. Kong, X. **ao, S. Birosca, Microstructure evolution and phase transformation in a nickel-based superalloy with varying Ti/Al ratios: Part 1—microstructure evolution. Mater. Sci. Eng. A 831, 142228 (2022). https://doi.org/10.1016/j.msea.2021.142228

    Article  CAS  Google Scholar 

  17. A.J. Goodfellow, E.I. Galindo-Nava, K.A. Christofidou, N.G. Jones, T. Martin, P.A.J. Bagot, C.D. Boyer, M.C. Hardy, H.J. Stone, Gamma prime precipitate evolution during aging of a model nickel-based superalloy. Metall. Mater. Trans. A 49, 718–728 (2018). https://doi.org/10.1007/s11661-017-4336-y

    Article  CAS  Google Scholar 

  18. T.B. Gibbons, R. Stickler, IN939: metallurgy, properties and performances, in Proceedings of the High Temperature Alloys for Gas Turbines, Liege, Belgium. ed. by A. Anu (Springer, Berlin, 1982), pp.369–394. https://doi.org/10.1007/978-94-009-7907-9_15

    Chapter  Google Scholar 

  19. G.P. Sjöberg, E. Dahl, Design with high temperature capacity cast superalloy IN 939 in large aircraft engine structures. ISABE, 1036-1046 (2005).

  20. M.T. Jovanovic, Z. Miskovic, B. Lukic, Microstructure and stress-rupture life of polycrystal, directionally solidified and single crystal castings of nickel-based IN 939 superalloy. Mater Charact 40, 261–268 (1998). https://doi.org/10.1016/S1044-5803(98)00013-8

    Article  CAS  Google Scholar 

  21. Z. Miskovic, M. Jovanovic, M. Gligic, B. Lukic, Microstructural investigation of IN 939 superalloy. Vacuum 43, 709–711 (1992). https://doi.org/10.1016/0042-207X(92)90115-D

    Article  CAS  Google Scholar 

  22. K.M. Delargy, G.D.W. Smith, Phase composition and phase stability of a high-chromium nickel-based superalloy, IN939. Metall. Trans. A 14, 1771–1783 (1983). https://doi.org/10.1007/BF02645547

    Article  Google Scholar 

  23. T.B. Gibbons, S. Osgerby, F. Gabrielli, V. Lupine, Factors controlling creep strength of cast Ni–Cr–base alloys. Mater. Sci. Technol. 3, 268–274 (1987). https://doi.org/10.1179/mst.1987.3.4.268

    Article  CAS  Google Scholar 

  24. M.R. Jahangiri, S.M.A. Boutorabi, H. Arabi, Study on incipient melting in cast Ni base IN939 superalloy during solution annealing and its effect on hot workability. Mater. Sci. Technol. 28, 1402–1413 (2012). https://doi.org/10.1179/1743284712Y.0000000090

    Article  CAS  Google Scholar 

  25. P. Kontis, E. Alabort, D. Barba, D. Collins, A. Wilkinson, R. Reed, On the role of boron on improving ductility in a new polycrystalline superalloy. Acta Mater. 124, 489–500 (2017). https://doi.org/10.1016/j.actamat.2016.11.009

    Article  CAS  Google Scholar 

  26. N. El-Bagoury, A. Nofal, Microstructure of an experimental Ni base superalloy under various casting conditions. Mater. Sci. Eng. A 527, 7793–7800 (2010). https://doi.org/10.1016/j.msea.2010.08.050

    Article  CAS  Google Scholar 

  27. L. Zheng, G. Zhang, C. **ao, T.L. Lee, B. Han, Z. Li, D. Daisenberger, J. Mi, The interdendritic-melt solidification control (IMSC) and its effects on the porosity and phase change of a Ni-based superalloy. Scr. Mater. 74, 84–87 (2014). https://doi.org/10.1016/j.scriptamat.2013.11.001

    Article  CAS  Google Scholar 

  28. X. Li, C. Jia, Z. Jiang, Y. Zhang, S. Lv, Investigation of solidification behavior in a new high alloy Ni-based superalloy. JOM 72, 4139–4147 (2020). https://doi.org/10.1007/s11837-020-04346-7

    Article  CAS  Google Scholar 

  29. J.R. Davis, Heat Resistant Materials, ASM Specialty Handbook (ASM International, Russell Township, 1997)

    Google Scholar 

  30. G. Matache, D.M. Stefanescu, C. Puscasu, E. Alexandrescu, Dendritic segregation and arm spacing in directionally solidified CMSX-4 superalloy. Int. J. Cast Met. Res. 29, 303–316 (2016). https://doi.org/10.1080/13640461.2016.1166726

    Article  CAS  Google Scholar 

  31. A. Formenti, A. Eliasson, H. Fredriksson, On the dendritic growth and microsegregation in Ni-base superalloys Ιn718, In625 and In939. High Temp. Mater. Proc. 24, 221–238 (2005). https://doi.org/10.1515/HTMP.2005.24.4.221

    Article  CAS  Google Scholar 

  32. A.K. Bhambri, T.Z. Kattamis, J.E. Morral, Cast microstructure of Inconel 713C and its dependence on solidification variables. Metall. Trans. B 6, 523–537 (1975). https://doi.org/10.1007/BF02913844

    Article  Google Scholar 

  33. S.L. Semiatin, R.C. Kramb, R.E. Turner, F. Zhang, M.M. Antony, Analysis of the homogenization of a nickel-base superalloy. Scr. Mater. 51, 491–495 (2004). https://doi.org/10.1016/j.scriptamat.2004.05.049

    Article  CAS  Google Scholar 

  34. J.H. Boswell, D. Clark, W. Li, M.M. Attallah, Cracking during thermal post-processing of laser powder bed fabricated CM247LC Ni-superalloy. Mater. Des. 174, 107793 (2019). https://doi.org/10.1016/j.matdes.2019.107793

    Article  CAS  Google Scholar 

  35. E.C. Caldwell, F.J. Fela, G.E. Fuchs, The segregation of elements in high-refractory-content single-crystal nickel-based superalloys. JOM 56, 44–48 (2004). https://doi.org/10.1007/s11837-004-0200-9

    Article  CAS  Google Scholar 

  36. L. Yu, Y. Zhao, S. Yang, W. Sun, S. Guo, X. Sun, Z. Hu, As-cast microstructure and solidification behavior of a high Al- and Nb-containing superalloy. J. Mater. Sci. 45, 3448–3456 (2010). https://doi.org/10.1007/s10853-010-4372-0

    Article  CAS  Google Scholar 

  37. G.B. Viswanathan, R. Shi, A. Genc, V.A. Vorontsov, C.M.F. Rae, M.J. Mills, Segregation at stacking faults within the γ′ phase of two Ni-base superalloys following intermediate temperature creep. Scr. Mater. 94, 5–8 (2015). https://doi.org/10.1016/j.scriptamat.2014.06.032

    Article  CAS  Google Scholar 

  38. D. Mukherji, J. Rosler, Effect of the γ′ volume fraction on the creep strength of Ni-base superalloys. Int. J. Mater. Res. 94, 478–484 (2003). https://doi.org/10.1515/ijmr-2003-0086

    Article  CAS  Google Scholar 

  39. S. Neumeier, F. Pyczak, M. Goken, The temperature dependent lattice misfit of rhenium and ruthenium containing nickel-base superalloys-experiment and modelling. Mater. Des. 198, 109362 (2021). https://doi.org/10.1016/j.matdes.2020.109362

    Article  CAS  Google Scholar 

  40. R. Gilles, D. Mukherji, M. Hoelzel, P. Strunz, D.M. Toebbens, B. Barbier, Neutron and X-ray diffraction measurements on micro- and nano-sized precipitates embedded in a Ni-based superalloy and after their extraction from the alloy. Acta Mater. 54, 1307–1316 (2006). https://doi.org/10.1016/j.actamat.2005.11.004

    Article  CAS  Google Scholar 

  41. F. Pyczak, B. Devrient, H. Mughrabi, The effects of different alloying elements on the thermal expansion coefficients, lattice constants and misfit of nickel-based superalloys investigated by X-ray diffraction. Superalloys 2004, 827–836 (2004)

    Article  Google Scholar 

  42. N.J. Krutz, Y. Gao, Y. Ren, I. Spinelli, M.J. Mills, In-situ γ–γ′ lattice parameter evolution and tertiary burst phenomena during controlled cooling of commercial PM Nickel-Base superalloys. Metall. Mater. Trans. A 52, 2973–2991 (2021). https://doi.org/10.1007/s11661-021-06292-8

    Article  CAS  Google Scholar 

  43. P. Caron, High γ′ solvus new generation nickel-based superalloys for single crystal turbine blade applications. Superalloys 2000, 737–746 (2000)

    Google Scholar 

  44. Standard Guide for Quantitative Analysis by Energy-Dispersive Spectroscopy, ASTM Designation: E 1508-98 (Reapproved 2003) (2003).

  45. X. Llovet, A. Moy, P.T. Pinard, J.H. Fournelle, Electron probe microanalysis: a review of recent developments and applications in materials science and engineering. Prog. Mater. Sci. 120, 100818 (2021). https://doi.org/10.1016/j.pmatsci.2021.100818

    Article  Google Scholar 

  46. C.M. Katsari, S. Katnagallu, S. Yue, Microstructural characterization of three different size of gamma prime precipitates in Rene 65. Mater Charact 169, 110542 (2020). https://doi.org/10.1016/j.matchar.2020.110542

    Article  CAS  Google Scholar 

  47. T. Link, A. Epishin, U. Brückner, P. Portella, Increase of misfit during creep of superalloys and its correlation with deformation. Acta Mater. 48, 1981–1994 (2000). https://doi.org/10.1016/S1359-6454(99)00456-5

    Article  CAS  Google Scholar 

  48. J. Coakley, E.A. Lass, D. Ma, M. Frost, H.J. Stone, D.N. Seidman, D.C. Dunand, Lattice parameter misfit evolution during creep of a cobalt-based superalloy single crystal with cuboidal and rafted gamma-prime microstructures. Acta Mater. 136, 118–125 (2017). https://doi.org/10.1016/j.actamat.2017.06.025

    Article  CAS  Google Scholar 

  49. M.R. Jahangiri, H. Arabi, S.M.A. Boutorabi, Comparison of microstructural stability of IN939 superalloy with two different manufacturing routes during long-time aging. Trans. Nonferr. Met. Soc. 24, 1717–1729 (2014). https://doi.org/10.1016/S1003-6326(14)63245-3

    Article  CAS  Google Scholar 

  50. M.R. Jahangiri, M. Abedini, Effect of long time service exposure on microstructure and mechanical properties of gas turbine vanes made of IN939 alloy. Mater. Des. 64, 588–600 (2014). https://doi.org/10.1016/j.matdes.2014.08.035

    Article  CAS  Google Scholar 

  51. S. Huang, K. An, Y. Gao, A. Suzuki, Determination of γ/γ′ lattice misfit in Ni-based single-crystal superalloys at high temperatures by neutron diffraction. Metall. Mater. Trans. A 49, 740–751 (2018). https://doi.org/10.1007/s11661-017-4455-5

    Article  CAS  Google Scholar 

  52. M. Durand, J. Cormier, F. Paumier, S. Katnagallu, A. Saksena, P. Kontis, F. Pettinari-Sturmel, M. Hantcherli, J. Franchet, C. Dumont, N. Bozzolo, Chemical redistribution and change in crystal lattice parameters during stress relaxation annealing of the AD730TM superalloy. Acta Mater. 237, 118141 (2022). https://doi.org/10.1016/j.actamat.2022.118141

    Article  CAS  Google Scholar 

  53. S.T. Wlodek, M. Kelly, D.A. Alden, The structure of Rene 88 DT, in Superalloys. ed. by R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, D.A. Woodford (The Minerals, Metals and Materials Society, Warrendale, 1996), pp.129–136

    Google Scholar 

  54. C. Schulze, M. Feller-Kniepmeier, Transmisson electron microscopy of phase composition and lattice misfit in the Re-containing nickel-base superalloy CMSX-10. Mater. Sci. Eng. A 281, 204–212 (2000). https://doi.org/10.1016/S0921-5093(99)00713-3

    Article  Google Scholar 

  55. J. Tiley, G.B. Viswanathan, J.Y. Hwang, A. Shiveley, R. Banerjee, Evaluation of gamma prime volume fractions and lattice misfits in a nickel base superalloy using the external standard X-ray diffraction method. Mater. Sci. Eng. A 528, 32–36 (2010). https://doi.org/10.1016/j.msea.2010.07.036

    Article  CAS  Google Scholar 

  56. C. Schulze, M. Feller-Kniepmeier, Phase compositions and lattice misfit in CMSX-11B partition coefficients in single crystal nickel base superalloys. Scr. Mater. 44, 731–736 (2001). https://doi.org/10.1016/S1359-6462(00)00670-9

    Article  CAS  Google Scholar 

  57. R. Dupke, W. Reimers, X-ray diffraction investigations on individual grains in the polycrystalline Ni-base superalloy IN939 during cyclic loading I: X-ray rocking curve broadening. Int. J. Mater. Res. 86, 371–377 (1995). https://doi.org/10.1515/ijmr-1995-860515

    Article  CAS  Google Scholar 

  58. R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  59. D. Migas, S. Roskosz, G. Moskal, Quantitative and qualitative assessment of as-cast microstructure and microporosity of γ–γ′ co-based superalloys. Int. Metalcast. 17, 2147–2156 (2023). https://doi.org/10.1007/s40962-022-00918-2

    Article  CAS  Google Scholar 

  60. J. Zhou, S. Cui, Effect of mismatch degree on mechanical properties of Ni-based single crystal alloy under force-temperature coupling. Mater. Res. Exp. 6, 076503 (2019). https://doi.org/10.1088/2053-1591/ab11fc

    Article  CAS  Google Scholar 

  61. H. Mughrabi, The importance of sign and magnitude of γ/γ′ lattice misfit in superalloys-with special reference to the new γ′-hardened cobalt-base superalloys. Acta Mater. 81, 21–29 (2014). https://doi.org/10.1016/j.actamat.2014.08.005

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Jahangiri.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahangiri, M. Influence of Cooling Rate During Solidification on Microstructural Features and γ′ Size and Morphology in Cast IN939 Superalloy. Inter Metalcast (2023). https://doi.org/10.1007/s40962-023-01183-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40962-023-01183-7

Keywords

Navigation