Log in

Modeling of Grain Refinement and Nucleation Behavior of Mg-4Y-0.5Zr (wt.%) Alloy via Cellular Automaton Model

  • Technical Paper
  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Grain refinement during solidification of Mg-4Y-0.5Zr (wt.%) alloy was both experimentally and numerically studied. A two-dimensional cellular automaton model is adopted. A LGK (Lipton–Glicksman–Kurz) analytical model is solved to predict the variation of dendrite tip velocity with undercooling under the conditions with and without Zr. With addition of 0.5 Zr, the growth velocity of dendrite tip is approximately one sixth of that without Zr. Experimental characterizations showed that the addition of Zr resulted in a significant grain refinement. The effects of cooling rate, initial nucleation density and Zr addition were numerically examined. A high cooling rate is important to the grain refinement, because it effectively increases the degree of effective undercooling and nullifies the effect of latent heat on stop** the heterogeneous nucleation. For Mg-4Y alloy, solute suppressed nucleation is magnified with the increase in initial nuclei density. Since a large portion of nuclei is depressed due to the fast overlap of solute diffusion layers, the grain refinement is not as desirable as expected. The mechanism of grain refinement with addition of Zr is that a reduced growth rate is accompanied with a slowed release rate of latent heat. Without much temperature interference from the neighboring develo** dendrites, more nuclei can achieve enough undercooling for nucleation and become grains. A high cooling rate promotes multi-step nucleation and significantly refines the grain structure, which cannot be achieved at a low cooling rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. H. Yu, S. Liu, L. Zhou et al., Study on Solidification Behavior and Hot Tearing Susceptibility of Mg-2xY-xNi Alloys. Inter Metalcast (2020). https://doi.org/10.1007/s40962-020-00531-1

    Article  Google Scholar 

  2. Y.C. Lee, A.K. Dahle, D.H. StJohn, The role of solute in grain refinement of magnesium. Metall. Mater. Trans. A 31(11), 2895–2906 (2000)

    Article  Google Scholar 

  3. W. Yang, S. Ji, R. Zhang, J. Zhang, L. Liu, Abnormal grain refinement behavior in high-pressure die casting of pure Mg with addition of Zr as grain refiner. JOM. 70(11), 2555–2560 (2018)

    Article  CAS  Google Scholar 

  4. Q.Y. Sun, D.R. Liu, L.P. Wang et al., Influences of Rod Diameter and Sand-Mould Strength on Hot Tearing in Mg WE43A Constrained Rod Castings. Inter Metalcast 13, 407–416 (2019). https://doi.org/10.1007/s40962-018-0265-9

    Article  CAS  Google Scholar 

  5. X.J. Wang, X.M. Wang, X.S. Hu, K. Wu, Effects of hot extrusion on microstructure and mechanical properties of Mg matrix composite reinforced with deformable TC4 particles. J. Magnes. Alloy. 8(2), 421–430 (2020)

    Article  CAS  Google Scholar 

  6. C. Jun, Z. Qing, L. Quanan, Microstructure and Mechanical Properties of AZ61 Magnesium Alloys with the Y and Ca Combined Addition. Inter Metalcast 12, 897–905 (2018). https://doi.org/10.1007/s40962-018-0222-7

    Article  CAS  Google Scholar 

  7. H.H. Yu, Y.C. **n, M.Y. Wang, Q. Liu, Hall-Petch relationship in Mg alloys: A review. J. Mater. Sci. Technol. 34(2), 248–256 (2018)

    Article  CAS  Google Scholar 

  8. Y. Ali, D. Qiu, B. Jiang, F. Pan, M.X. Zhang, Current research progress in grain refinement of cast magnesium alloys: A review article. J. Alloy. Compd. 619, 639–651 (2015)

    Article  CAS  Google Scholar 

  9. M. Qian, A. Das, Grain refinement of magnesium alloys by zirconium: formation of equiaxed grains. Scr. Mater. 54(5), 881–886 (2006)

    Article  CAS  Google Scholar 

  10. M. Sun, D.H. StJohn, M.A. Easton, K. Wang, J.M. Ni, Effect of cooling rate on the grain refinement of Mg-Y-Zr alloys. Metall. Mater. Trans. A 51(12), 482–496 (2020)

    Article  CAS  Google Scholar 

  11. S. Zhu, M.A. Easton, T.B. Abbott, J.F. Nie, M.S. Dargusch, N. Hort, M.A. Gibson, Evaluation of magnesium die-casting alloys for elevated temperature applications: microstructure, tensile properties, and creep resistance. Metall. Mater. Trans. A 46(8), 3543–3554 (2015)

    Article  CAS  Google Scholar 

  12. S. Mereddy, M.J. Bermingham, D.H. StJohn, M.S. Dargusch, Grain refinement of wire arc additively manufactured titanium by the addition of silicon. J. Alloy. Compd. 695, 2097–2103 (2017)

    Article  CAS  Google Scholar 

  13. M. Qian, P. Cao, M.A. Easton, S.D. McDonald, D.H. StJohn, An analytical model for constitutional supercooling-driven grain formation and grain size prediction. Acta Mater. 58(9), 3262–3270 (2010)

    Article  CAS  Google Scholar 

  14. D.H. StJohn, M.A. Easton, M. Qian, J.A. Taylor, Grain Refinement of magnesium alloys: A review of recent research, theoretical developments, and their application. Metall. Mater. Trans. A 44(7), 2935–2949 (2013)

    Article  CAS  Google Scholar 

  15. Y. Wang, X. Zeng, W. Ding, A.A. Luo, A.K. Sachdev, Grain refinement of AZ31 magnesium alloy by titanium and low-frequency electromagnetic casting. Metall. Mater. Trans. A 38(6), 1358–1366 (2007)

    Article  Google Scholar 

  16. D. Zhang, D. Qiu, S. Zhu, M. Dargusch, D. StJohn, M. Easton, Grain refinement in laser remelted Mg-3Nd-1Gd-0.5Zr alloy. Scr. Mater. 183, 12-16 (2020)

  17. Z.K. Peng, X.M. Zhang, J.J. Chen, Grain refinement mechanism of zirconium in Mg-9Gd-4Y alloys. J. Univ. Sci. Technol. B 28(2), 148–152 (2006)

    CAS  Google Scholar 

  18. N. Balasubramani, G. Wang, M.A. Easton, D.H. StJohn, M.S. Dargusch, A comparative study of the role of solute, potent particles and ultrasonic treatment during solidification of pure Mg, Mg-Zn and Mg-Zr alloys. J. Magnes. Alloy. Online 1-11 (2020)

  19. D. Shu, B. Sun, J. Mi, P.S. Grant, A quantitative study of solute diffusion field effects on heterogeneous nucleation and the grain size of alloys. Acta Mater. 59(5), 2135–2144 (2011)

    Article  CAS  Google Scholar 

  20. T.Z. Gong, Y. Chen, Y.F. Cao, X.H. Kang, D.Z. Li, Fast simulations of a large number of crystals growth in centimeter-scale during alloy solidification via nonlinearly preconditioned quantitative phase-field formula. Comput. Mater. Sci. 147, 338–352 (2018)

    Article  CAS  Google Scholar 

  21. X.B. Qi, Y. Chen, X.H. Kang, D.Z. Li, T.Z. Gong, Modeling of coupled motion and growth interaction of equiaxed dendritic crystals in a binary alloy during solidification. Sci. Rep. 7, 45770 (2017)

    Article  Google Scholar 

  22. H. Fang, Q. Tang, Q. Zhang, T. Gu, M.F. Zhu, Modelling of microstructure and microsegregation formation during solidification of Al-Si-Mg alloys. Int. J. Heat Mass Transfer. 133, 371–381 (2019)

    Article  CAS  Google Scholar 

  23. D.K. Sun, M.F. Zhu, T. Dai, W.S. Cao, S.L. Chen, D. Raabe, C.P. Hong, Modelling of dendritic growth in ternary alloy solidification with melt convection. Int. J. Cast Metal. Res. 24(3–4), 177–183 (2011)

    Article  CAS  Google Scholar 

  24. Q.Y. Zhang, D.K. Sun, S.H. Zhang, H. Wang, M.F. Zhu, Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy. Chin. Phys. B 29(7), 078104 (2020)

  25. S. Minamoto, S. Nomoto, A. Hamaya, T. Horiuchi, S. Miura, Microstructure simulation for solidification of magnesium-zinc-yttrium alloy by multi-phase-field method coupled with CALPHAD database. ISIJ Int. 50(12), 1914–1919 (2010)

    Article  CAS  Google Scholar 

  26. J.P. Yao, X.G. Li, W.Y. Long, L. Zhang, Numerical simulation of dendritic growth of magnesium alloys under forced flow using KKS phase-field model. Rare Metal Mat. Eng. 43(1), 97–102 (2014)

    CAS  Google Scholar 

  27. M. Yang, S.M. **ong, Z. Guo, Characterisation of the 3-D dendrite morphology of magnesium alloys using synchrotron X-ray tomography and 3-D phase-field modelling. Acta Mater. 92, 8–17 (2015)

    Article  CAS  Google Scholar 

  28. M. Yang, S.M. **ong, Z. Guo, Effect of different solute additions on dendrite morphology and orientation selection in cast binary magnesium alloys. Acta Mater. 112, 261–272 (2016)

    Article  CAS  Google Scholar 

  29. M. Rappaz, C.-A. Gandin, Probabilistic modeling of microstructure formation in solidification process. Acta Metall. Mater. 41(2), 345–360 (1993)

    Article  CAS  Google Scholar 

  30. H.B. Yin, S.D. Felicelli, A cellular automaton model for dendrite growth in magnesium alloy AZ91, Modelling Simul. Mater. Sci. Eng. 17(7), 075011 (2010)

  31. M. Wu, S. **ong, Modeling of equiaxed and columnar dendritic growth of magnesium alloy. Trans. Nonferrous Met. Soc. China 22(9), 2212–2219 (2012)

    Article  CAS  Google Scholar 

  32. L. Huo, Z.Q. Han, B. Liu, Modeling and simulation of microstructure evolution of cast magnesium alloys using CA method based on two sets of mesh. Acta Metall. Sin. 45(12), 1414–1420 (2009)

    CAS  Google Scholar 

  33. D.R. Liu, H. Zhao, L. Wang, Numerical investigation of grain refinement of magnesium alloys: Effects of cooling rate. J. Phys. Chem. Solids 144, 109486 (2020)

  34. Z.P. Pu, L. Wang, D.R. Liu, Numerical modeling of grain refinement during solidification of Mg-4Y-3Nd (wt%) alloy via mesh-anisotropy reduction algorithm. Mater. Today Commun. 25, 101679 (2020)

  35. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, D.J. Bristow, Modeling of inoculation of metallic melts: application to grain refinement of aluminum by Al-Ti-B. Acta Mater. 48(11), 2823–2835 (2000)

    Article  CAS  Google Scholar 

  36. E. Guo, S. Shuai, D. Kazantsev, S. Karagadde, A.B. Phillion, T. **g, W. Li, P.D. Lee, The influence of nanoparticles on dendritic grain growth in Mg alloys. Acta Mater. 152, 127–137 (2018)

    Article  CAS  Google Scholar 

  37. C.-A. Gandin, G. Guillemot, B. Appolaire, N.T. Niane, Boundary layer correlation for dendrite tip growth with fluid flow. Mat. Sci. Eng. A 342(1–2), 44 (2003)

    Article  Google Scholar 

  38. A.A. Wheeler, W.J. Boetlinger, G.B. McFadden, Phase field model for isothermal phase transitions in binary alloys. Phys. Rev. A 45(10), 7424–7439 (1992)

    Article  CAS  Google Scholar 

  39. M.F. Zhu, W. Cao, S.L. Chen, C.P. Hong, Y.A. Chang, Modeling of microstructure and microsegregation in solidification of multi-component alloys. J. Phase Equilib. Diff. 28(1), 130–138 (2007)

    Article  Google Scholar 

  40. Y. Ali, G. You, F. Pan, M.X. Zhang, Grain coarsening of cast magnesium alloys at high cooling rate: a new observation. Metall. Mater. Trans. A 48(1), 474–481 (2017)

    Article  CAS  Google Scholar 

  41. H. Li, K. Wang, G. Xu, H. Jiang, Q. Wang, W. Ding, Nanoparticle-induced growth behavior of primary alpha-Mg in AZ91 alloys. Mater. Des. 196, 109146 (2020)

  42. F. Wang, D. Qiu, Z.L. Liu, J.A. Taylor, M.A. Easton, M.X. Zhang, The grain refinement mechanism of cast aluminium by zirconium. Acta Mater. 61(15), 5636–5645 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dong-Rong Liu acknowledges the support by the National Natural Science Foundation of China (Grant No. 51971086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Rong Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Pu, Z., Wang, L. et al. Modeling of Grain Refinement and Nucleation Behavior of Mg-4Y-0.5Zr (wt.%) Alloy via Cellular Automaton Model. Inter Metalcast 16, 945–961 (2022). https://doi.org/10.1007/s40962-021-00654-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-021-00654-z

Keywords

Navigation