Log in

Assessment of biofuel production yield using microalgae biomass in cattle wastewater

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

In this study, cattle wastewater (ARB) was used to cultivate a new mix of microalgae in photobioreactors (FBRs) developed specifically for this research. Over an 8-week period, biomass production collections were conducted, with ARB changes at the beginning of each week. The values presented in this study correspond to the dry biomass results of 4 samples. The dry mass produced ranged from 0.50 to 5.0 g L− 1, and CO2 biofixation varied from 0.10 g L− 1 d− 1 to 0.90 g L− 1 d− 1. The lipid percentages analyzed ranged from 7.3 to 15.7%, while carbohydrate values varied from 22 to 33%, with higher values attributed to the higher concentration of nutrients in ARB. C16:0 fatty acid was detected in higher concentrations in all experiments. Additionally, all samples recorded values greater than 12% for C18:3, failing to meet the requirements of EN14214 (European standard). On the other hand, fatty acids C18:2, C18:3, and C18:1 represented 21% of the sample composition, with lower percentages of these acids implying greater oxidative stability. All samples analyzed had cetane values greater than 45, meeting the requirement of ANP255 (Brazilian standard). Finally, the mass balance to determine biofuel yield from biomass on a real scale yielded values ranging from 131 g kg− 1 to 223 g kg− 1. However, the substitution of this production in relation to the national production of diesel and ethanol amounted to only 1% for the case studied. Meanwhile, CO2 capture from the samples ranged between 2691 kg and 11,145 kg per year from the atmosphere. These results indicate the potential for biofuel production and reduction of greenhouse gas emissions compared to the current scenario of microalgae cultivation in wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data and information generated during this study are available based on reasonable request.

References

  • Aditya L, Mahlia TI, Nguyen LN, Vu HP, Nghiem LD (2022) Microalgae-bacteria consortium for wastewater treatment and biomass production. Sci Total Environ 838:155871

    Article  CAS  Google Scholar 

  • Alviso D, Artana G, Duriez T (2020) Prediction of biodiesel physico-chemical properties from its fatty acid composition using genetic programming. Fuel 264:116844

    Article  CAS  Google Scholar 

  • ANP: Agência Nacional do Petróleo, Gás e Biocombustíveis. Anuário Estatístico Brasileiro de Petróleo, Gás e Biocombustíveis (2021) Available in: https://www.gov.br/anp/pt-br/centrais-de-conteudo/dados-estatisticos

  • Arutselvan C, kumar Seenivasan H, Oscar FL, Ramya G, Chi NTL, Pugazhendhi A, Thajuddin N (2022) Review on wastewater treatment by microalgae in different cultivation systems and its importance in biodiesel production. Fuel 324:124623

    Article  CAS  Google Scholar 

  • Carneiro GA, Silva JJR, de Assis Oliveira G, Pio FPB (2018) Uso De microalgas para produção de biodiesel. Res Soc Dev 7(5):e1075181

    Article  Google Scholar 

  • Chisti Y. (2007). Biodiesel from microalgae. Biotechnology advances, 25(3), 294–306.

  • Chokshi K, Pancha I, Ghosh A, Mishra S (2016) Microalgal biomass generation by phycoremediation of dairy industry wastewater: an integrated approach towards sustainable biofuel production. Bioresour Technol 221:455–460

    Article  CAS  Google Scholar 

  • Costa JAV, De Morais MG (2011) The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol 102(1):2–9

    Article  CAS  Google Scholar 

  • De Jesus SS, Ferreira GF, Moreira LS, Maciel Filho R (2020) Biodiesel production from microalgae by direct transesterification using green solvents. Renewable Energy 160:1283–1294

    Article  Google Scholar 

  • De Mendonca HV, Otenio MH, Marchao L, Lomeu A, de Souza DS, Reis A (2022) Biofuel recovery from microalgae biomass grown in dairy wastewater treated with activated sludge: the next step in sustainable production. Sci Total Environ 824:153838

    Article  Google Scholar 

  • De Souza DS, Valadão RC, Nascentes AL, da Silva LDB, de Mendonça HV (2022) Use of the cyanobacterium Spirulina platensis in cattle wastewater bioremediation. Acta Scientiarum Technol 44:e58806–e58806

    Article  Google Scholar 

  • De Souza DS, Lomeu A, de Oliveira Moreira OB, de Oliveira MAL, de Mendonça HV (2023) New methods to increase microalgae biomass in anaerobic cattle wastewater and the effects on lipids production. Biomass Bioenergy 176:106915

    Article  Google Scholar 

  • Dos Santos MGB, Duarte RL, Maciel AM, Abreu M, Reis A, de Mendonça HV (2021) Microalgae biomass production for biofuels in Brazilian scenario: a critical review. Bioenergy Res 14:23–42

    Article  Google Scholar 

  • Fré D, Chies N (2016) Influência das condições de cultivo da microalga Dunaliella tertiolecta na produção de carotenoides e lipídios

  • Galadima, A., Muraza, O. (2014). Biodiesel production from algae by using heterogeneous catalysts: A criticalreview. Energy, 78, 72–83.

  • Girardi JC (2019) Otimização do ponto de entupimento de filtro a frio de biodiesel de babaçu

  • Gonçalves JMF, Martins G (2008) Consumo De Energia E emissão de gases do efeito estufa no transporte de cargas no Brasil. Brasil Engenharia. Ago

  • Gondi R, Kavitha S, Kannah RY, Karthikeyan OP, Kumar G, Tyagi VK, Banu JR (2022) Algal-based system for removal of emerging pollutants from wastewater: a review. Bioresour Technol 344:126245

    Article  CAS  Google Scholar 

  • Hussain F, Shah SZ, Ahmad H, Abubshait SA, Abubshait HA, Laref A, Iqbal M (2021) Microalgae an ecofriendly and sustainable wastewater treatment option: Biomass application in biofuel and bio-fertilizer production. A review. Renew Sustain Energy Rev 137:110603

    Article  CAS  Google Scholar 

  • Karam LM, Soccol CR (2007) Efeito Da temperatura e pH no cultivo de Spirulina major, vol 10. Arquivos de Ciências Veterinárias e Zoologia da UNIPAR, 1

  • Khan MA, Islam S, Valverde JC, Khan SA (2018) Control strategies of hepatitis B with three control variables. J Biol Syst 26(01):1–21

    Article  Google Scholar 

  • Khandelwal A, Vijay A, Dixit A, Chhabra M (2018) Microbial fuel cell powered by lipid extracted algae: a promising system for algal lipids and power generation. Bioresour Technol 247:520–527

    Article  CAS  Google Scholar 

  • Kumar AK, Sharma S, Patel A, Dixit G, Shah E (2019) Comprehensive evaluation of microalgal based dairy effluent treatment process for clean water generation and other value-added products. Int J Phytoremediation 21(6):519–530

    Article  CAS  Google Scholar 

  • Liang C, Zhang N, Pang Y, Li S, Shang J, Zhang Y, Fei H (2023) Cultivation of Spirulina platensis for nutrient removal from piggery wastewater. Environ Sci Pollut Res 30(36):85733–85745

    Article  CAS  Google Scholar 

  • Lomeu AA, de Oliveira Moreira OB, de Oliveira MAL, de Mendonça HV (2023) Applying ozone in cattle Wastewater to maximize lipid production in Microalgae Biomass. Bioenergy Res 1–13

  • Manzoor, M., Hussain, A., Chaudhary, A., Schenk, P. M., Deepanraj, B., Show, P. L. (2022). Biodiesel qualityassessment of microalgae cultivated mixotrophically on sugarcane bagasse. Sustainable Energy Technologies andAssessments, 53, 102359.

  • Medipally SR, Yusoff FM, Banerjee S, Shariff M (2015) Microalgae as sustainable renewable energy feedstock for biofuel production. BioMed Research International 2015

  • Mezzomo N, Saggiorato AG, Siebert R, Tatsch PO, Lago MC, Hemkemeier M, Colla LM (2010) Cultivation of microalgae Spirulina platensis (Arthrospira platensis) from biological treatment of swine wastewater. Food Sci Technol 30:173–178

    Article  Google Scholar 

  • Min KH, Kim DH, Ki MR, Pack SP (2022) Recent progress in flocculation, dewatering, and drying technologies for microalgae utilization: scalable and low-cost harvesting process development. Bioresour Technol 344:126404

    Article  CAS  Google Scholar 

  • Molazadeh M, Ahmadzadeh H, Pourianfar HR, Lyon S, Rampelotto PH (2019) The use of microalgae for coupling wastewater treatment with CO2 biofixation. Front Bioeng Biotechnol 7:42

    Article  Google Scholar 

  • Moradi-Kheibari N, Ahmadzadeh H, Lyon SR (2022) Correlation of total lipid content of chlorella vulgaris with the dynamics of individual fatty acid growth rates. Front Mar Sci 9:837067

    Article  Google Scholar 

  • Okoro V, Azimov U, Munoz J, Hernandez HH, Phan AN (2019) Microalgae cultivation and harvesting: growth performance and use of flocculants-A review. Renew Sustain Energy Rev 115:109364

    Article  CAS  Google Scholar 

  • Ota, S., Oshima, K., Yamazaki, T., Kim, S., Yu, Z., Yoshihara, M., Kawano, S. (2016). Highly efficient lipidproduction in the green alga Parachlorella kessleri: draft genome and transcriptome endorsed by whole-cell 3Dultrastructure. Biotechnology for biofuels, 9, 1–10.

  • Patel A, Karageorgou D, Rova E, Katapodis P, Rova U, Christakopoulos P, Matsakas L (2020) An overview of potential oleaginous microorganisms and their role in biodiesel and omega-3 fatty acid-based industries. Microorganisms 8(3):434

    Article  CAS  Google Scholar 

  • Peng L, Zhang Z, Cheng P, Wang Z, Lan CQ (2016) Cultivation of Neochloris oleoabundans in bubble column photobioreactor with or without localized deoxygenation. Bioresour Technol 206:255–263

    Article  CAS  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102(1):17–25

    Article  CAS  Google Scholar 

  • Ramos-Martinez EM, Fimognari L, Sakuragi Y (2017) High‐yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii. Plant Biotechnol J 15(9):1214–1224

    Article  CAS  Google Scholar 

  • Ray A, Nayak M, Ghosh A (2022) A review on co-culturing of microalgae: a greener strategy towards sustainable biofuels production. Sci Total Environ 802:149765

    Article  CAS  Google Scholar 

  • Rosenberg JN, Mathias A, Korth K, Betenbaugh MJ, Oyler GA. (2011). Microalgal biomass production and carbondioxide sequestration from an integrated ethanol biorefinery in Iowa: A technical appraisal and economic feasibilityevaluation. Biomass and Bioenergy, 35(9), 3865–3876.

  • Santa Rita AV, Santana J, de Mendonça HV (2023) Biodiesel Production using Microalgae Mix: an Eco–friendly Approach for Agro-industrial Wastewater Treatment and CO2 Biofixation. Water Air Soil Pollut 234(11):693

    Article  CAS  Google Scholar 

  • Sato RT, Alves JB, Amorim TL, de Oliveira MAL (2021) A capillary electrophoresis method for free fatty acids screening and acidity determination in biodiesel. Electrophoresis 42(9–10):1135–1142

    Article  CAS  Google Scholar 

  • Suman S (2018) Hybrid nuclear-renewable energy systems: a review. J Clean Prod 181:166–177

    Article  Google Scholar 

  • Thanigaivel S, Priya AK, Dutta K, Rajendran S, Vasseghian Y (2022) Engineering strategies and opportunities of next generation biofuel from microalgae: a perspective review on the potential bioenergy feedstock. Fuel 312:122827

    Article  CAS  Google Scholar 

  • Tizvir A, Shojaeefard MH, Zahedi A, Molaeimanesh GR (2022) Performance and emission characteristics of biodiesel fuel from Dunaliella tertiolecta microalgae. Renewable Energy 182:552–561

    Article  CAS  Google Scholar 

  • Vieira Costa JA, Colla LM, Filho PD, Kabke K, Weber A (2002) Modelling of Spirulina platensis growth in fresh water using response surface methodology. World J Microbiol Biotechnol 18:603–607

    Article  CAS  Google Scholar 

  • Vonshak A (ed) (1997) Spirulina platensis arthrospira: physiology, cell-biology and biotechnology. CRC

  • Zullaikah S, Jessinia MCP, Rinaldi Yasmin M, Rachimoellah M, Wu DW (2019) Lipids extraction from wet and unbroken microalgae Chlorella vulgaris using subcritical water. Materials science forum, vol 964. Trans Tech Publications Ltd, pp 103–108

Download references

Acknowledgements

The authors thank the research funding agencies: FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro) processes nº E-26/210.807/2021.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by Larissa T. Soares and Henrique V. de Mendonça. The first draft of the manuscript was written by Renata N. Vilas-Bôas and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Henrique V. de Mendonça.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, L.T., Vilas-Bôas, R.N., Mendes, M.F. et al. Assessment of biofuel production yield using microalgae biomass in cattle wastewater. Sustain. Water Resour. Manag. 10, 135 (2024). https://doi.org/10.1007/s40899-024-01114-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40899-024-01114-2

Keywords

Navigation