Log in

The management of microplastics in urban and rural water resources: technological and socioeconomic arrangements and regulations

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

This study provides evidence of a comprehensive analysis of microplastic (MPs) additive concentrations, specifically focusing on phthalate plasticizers such as DEP, DiBP, DEHP, DMP, and DnBP, in water sources. It also considers technologies and socioeconomic factors. The former includes technologies to detect, absorb, and harvest the pollutants, while the latter targets users' behaviors regarding plastics. In light of the meta-analysis based on the conceptually-defined life cycle of MPs in the water treatment plants, water and sewage pi** systems, urban drinking water, rivers and seas, the entire point of phthalate-concentration was estimated, as follows \({\overline{X} }_{DEP}\)= 0.74 (\(\mu\) gL−1) (n = 12) (Std. Error = 0.04), \({\overline{X} }_{DiBP}\) = 2.11 (\(\mu\) gL−1) (n = 11) (Std. Error = 0.16), \({\overline{X} }_{DEHP}\)=  = 11.62 (n = 22) (\(\mu\) gL−1) (Std. Error = 0.38), \({\overline{X} }_{DMP}\)= 0.05 (n = 7) (\(\mu\) gL−1) (Std. Error = 0.007), \({\overline{X} }_{DnBP}\)= 5.82 (n = 4) (\(\mu\) gL−1) (Std. Error = 0.41), and \({\overline{X} }_{\sum \mathrm{PAEs}}\)= 12.09 (\(\mu\) gL−1) (n = 15) (Std. Error = 1.52) (DMP < DEP < DiBP < DnBP < DEHP). As inferred from an in-depth literature review, it becomes clear that four methods of magnetic extraction, sol–gel agglomeration, flocculation, and photocatalytic micromotors serve to attain identification, determination, agglomeration, extraction, coagulation, and separation of phthalate-MPs. Also, educationally, legally, communicatively, and financially-driven initiatives are widely applied to handle citizens’ plastic use behaviors to reduce the emission of plastic wastes as possible. In general, designing and implementing technologies to reduce the pollution of plasticizers would be efficient when technologically-driven initiatives are integrated with the socioeconomic enterprises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Data would be available on request.

References

  • Abadi, B., Shahvali, M. (2020). Hardware and Software Remediation Technologies for Water Resources Pollution. In Methods for Bioremediation of Water and Wastewater Pollution (pp. 27–60). Springer, Cham.

  • Abadi B, Kelboro G (2021) Farmers’ contributions to achieving water sustainability: a meta-analytic path analysis of predicting water conservation behavior. Sustainability 14(1):279

    Google Scholar 

  • Abbott, J. K., & Sumaila, U. R. (2020). Reducing marine plastic pollution: policy insights from economics. Review of environmental economics and policy.

  • Ahmed MB, Rahman MS, Alom J, Hasan MS, Johir MAH, Mondal MIH, Yoon MH (2021) Microplastic particles in the aquatic environment: a systematic review. Science of The Total Environment 775:145793

    ADS  CAS  PubMed  Google Scholar 

  • Al-Omran LA, Preston MR (1987) The interactions of phthalate esters with suspended particulate material in fresh and marine waters. Environ Pollut 46(3):177–186

    CAS  PubMed  Google Scholar 

  • Amiri A, Chahkandi M, Targhoo A (2017) Synthesis of nano-hydroxyapatite sorbent for microextraction in packed syringe of phthalate esters in water samples. Anal Chim Acta 950:64–70

    CAS  PubMed  Google Scholar 

  • Avio, C. G., Gorbi, S., Milan, M., Benedetti, M., Fattorini, D., d'Errico, G., Regoli, F. (2015). Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environmental pollution, 198, 211–222.

  • Bååth JA, Borch K, Westh P (2020) A suspension-based assay and comparative detection methods for characterization of polyethylene terephthalate hydrolases. Anal Biochem 607:113873

    Google Scholar 

  • Cao, X. L. (2008). Determination of phthalates and adipate in bottled water by headspace solid-phase microextraction and gas chromatography/mass spectrometry. Journal of Chromatography A, 1178(1–2), 231–238. Dąrowska, A., Borcz, A., & Nawrocki, J. (2003). Aldehyde contamination of mineral water stored in PET bottles. Food additives and contaminants, 20(12), 1170–1177.

  • Chakraborty P, Shappell NW, Mukhopadhyay M, Onanong S, Rex KR, Snow D (2021) Surveillance of plasticizers, bisphenol A, steroids and caffeine in surface water of River Ganga and Sundarban wetland along the Bay of Bengal: occurrence, sources, estrogenicity screening and ecotoxicological risk assessment. Water Res 190:116668

    CAS  PubMed  Google Scholar 

  • Chauhan, N. S., & Punia, A. (2022). Role of Education and Society in Dealing Plastic Pollution in the Future. Plastic and Microplastic in the Environment: Management and Health Risks, 267–281

  • Chávez A, Maya C, Gibson R, Jiménez B (2011) The removal of microorganisms and organic micropollutants from wastewater during infiltration to aquifers after irrigation of farmland in the Tula Valley. Mexico Environmental Pollution 159(5):1354–1362

    PubMed  Google Scholar 

  • Cheng, Z., Liu, J. B., Gao, M., Shi, G. Z., Fu, X. J., Cai, P., Nie, X. P. (2019). Occurrence and distribution of phthalate esters in freshwater aquaculture fish ponds in Pearl River Delta, China. Environmental Pollution, 245, 883–888.

  • da Costa JP, Mouneyrac C, Costa M, Duarte AC, Rocha-Santos T (2020) The role of legislation, regulatory initiatives and guidelines on the control of plastic pollution. Front Environ Sci 8:104

    Google Scholar 

  • Dąrowska A, Borcz A, Nawrocki J (2003) Aldehyde contamination of mineral water stored in PET bottles. Food Addit Contam 20(12):1170–1177

    PubMed  Google Scholar 

  • Deng L, Cai L, Sun F, Li G, Che Y (2020) Public attitudes towards microplastics: Perceptions, behaviors and policy implications. Resour Conserv Recycl 163:105096

    Google Scholar 

  • Du P, Zhou Z, Huang H, Han S, Xu Z, Bai Y, Li X (2018) Estimating population exposure to phthalate esters in major Chinese cities through wastewater-based epidemiology. Sci Total Environ 643:1602–1609

    ADS  CAS  PubMed  Google Scholar 

  • Eagle L, Hamann M, Low DR (2016) The role of social marketing, marine turtles and sustainable tourism in reducing plastic pollution. Mar Pollut Bull 107(1):324–332

    CAS  PubMed  Google Scholar 

  • Elsayed, A. A., Erfan, M., Sabry, Y. M., Dris, R., Gasperi, J., Barbier, J. S., Bourouina, T. (2021). A microfluidic chip enables fast analysis of water microplastics by optical spectroscopy. Scientific reports, 11(1), 1–11.

  • EPO (Environmental Protection Organization (2018). How many tons of waste is produced in Iran every year? 102248.

  • Fatoki OS, Bornman M, Ravandhalala L, Chimuka L, Genthe B, Adeniyi AJWS (2010) Phthalate ester plasticizers in freshwater systems of Venda, South Africa and potential health effects. Water Sa 36(1):117–125

    CAS  Google Scholar 

  • Fauser P, Vikelsøe J, Sørensen PB, Carlsen L (2003) Phthalates, nonylphenols and LAS in an alternately operated wastewater treatment plant—fate modelling based on measured concentrations in wastewater and sludge. Water Res 37(6):1288–1295

    CAS  PubMed  Google Scholar 

  • Frank, Y. A., Vorobiev, E. D., Vorobiev, D. S., Trifonov, A. A., Antsiferov, D. V., Soliman Hunter, T., Strezov, V. (2020). Preliminary screening for microplastic concentrations in the surface water of the Ob and Tom Rivers in Siberia, Russia. Sustainability, 13(1), 80.

  • Fromme H, Küchler T, Otto T, Pilz K, Müller J, Wenzel A (2002) Occurrence of phthalates and bisphenol A and F in the environment. Water Res 36(6):1429–1438

    CAS  PubMed  Google Scholar 

  • Gallo, F., Fossi, C., Weber, R., Santillo, D., Sousa, J., Ingram, I., Romano, D. (2018). Marine litter plastics and microplastics and their toxic chemicals components: the need for urgent preventive measures. Environmental Sciences Europe, 30(1), 1–14.

  • Grbic J, Nguyen B, Guo E, You JB, Sinton D, Rochman CM (2019) Magnetic extraction of microplastics from environmental samples. Environ Sci Technol Lett 6(2):68–72

    CAS  Google Scholar 

  • Hale, R. C., Seeley, M. E., La Guardia, M. J., Mai, L., & Zeng, E. Y. (2020). A global perspective on microplastics. Journal of Geophysical Research: Oceans, 125(1), e2018JC014719.

  • Hartmann, N. B., Huffer, T., Thompson, R. C., Hassellöv, M., Verschoor, A., Daugaard, A. E., Wagner, M. (2019). Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris.

  • Jara S, Lysebo C, Greibrokk T, Lundanes E (2000) Determination of phthalates in water samples using polystyrene solid-phase extraction and liquid chromatography quantification. Anal Chim Acta 407(1–2):165–171

    CAS  Google Scholar 

  • Jiang X, Li Y, Tang X, Jiang J, He Q, **ong Z, Zheng H (2021) Biopolymer-based flocculants: a review of recent technologies. Environ Sci Pollut Res 28(34):46934–46963

    CAS  Google Scholar 

  • Kandziora JH, Van Toulon N, Sobral P, Taylor HL, Ribbink AJ, Jambeck JR, Werner S (2019) The important role of marine debris networks to prevent and reduce ocean plastic pollution. Mar Pollut Bull 141:657–662

    CAS  PubMed  Google Scholar 

  • Katsikantami I, Sifakis S, Tzatzarakis MN, Vakonaki E, Kalantzi OI, Tsatsakis AM, Rizos AK (2016) A global assessment of phthalates burden and related links to health effects. Environ Int 97:212–236

    CAS  PubMed  Google Scholar 

  • Kotowska U, Kapelewska J, Sawczuk R (2020) Occurrence, removal, and environmental risk of phthalates in wastewaters, landfill leachates, and groundwater in Poland. Environ Pollut 267:115643

    CAS  PubMed  Google Scholar 

  • Kumar, R., Manna, C., Padha, S., Verma, A., Sharma, P., Dhar, A., Bhattacharya, P. (2022). Micro (nano) plastics pollution and human health: How plastics can induce carcinogenesis to humans?. Chemosphere, 298, 134267.

  • Kwon BG, Koizumi K, Chung SY, Kodera Y, Kim JO, Saido K (2015) Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution. J Hazard Mater 300:359–367

    CAS  PubMed  Google Scholar 

  • Kwon, B. G., Amamiya, K., Sato, H., Chung, S. Y., Kodera, Y., Kim, S. K., Saido, K. (2017). Monitoring of styrene oligomers as indicators of polystyrene plastic pollution in the North-West Pacific Ocean. Chemosphere, 180, 500–505.

  • Li X, Zhong M, Xu S, Sun C (2006) Determination of phthalates in water samples using polyaniline-based solid-phase microextraction coupled with gas chromatography. J Chromatogr A 1135(1):101–108

    CAS  PubMed  Google Scholar 

  • Li N, Ying GG, Hong H, Tsang EPK, Deng WJ (2021) Plasticizer contamination in the urine and hair of preschool children, airborne particles in kindergartens, and drinking water in Hong Kong. Environ Pollut 271:116394

    CAS  PubMed  Google Scholar 

  • Liu X, Shi J, Bo T, Zhang H, Wu W, Chen Q, Zhan X (2014) Occurrence of phthalic acid esters in source waters: a nationwide survey in China during the period of 2009–2012. Environ Pollut 184:262–270

    CAS  PubMed  Google Scholar 

  • Liu N, Wang Y, Yang Q, Lv Y, ** X, Giesy JP, Johnson AC (2016) Probabilistic assessment of risks of diethylhexyl phthalate (DEHP) in surface waters of China on reproduction of fish. Environ Pollut 213:482–488

    CAS  PubMed  Google Scholar 

  • Liu, W., Zone, W. F. T. (2008). Determination of sub-ppb level of phthalates in water by auto-SPME and GC-MS. Agilent Technologies.

  • Luks-Betlej K, Popp P, Janoszka B, Paschke H (2001) Solid-phase microextraction of phthalates from water. J Chromatogr A 938(1–2):93–101

    CAS  PubMed  Google Scholar 

  • Luo, Q., Liu, Z. H., Yin, H., Dang, Z., Wu, P. X., Zhu, N. W., Liu, Y. (2018). Migration and potential risk of trace phthalates in bottled water: A global situation. Water Research, 147, 362–372.

  • Mailler, R., Gasperi, J., Coquet, Y., Deshayes, S., Zedek, S., Cren-Olivé, C., Rocher, V. (2015). Study of a large scale powdered activated carbon pilot: Removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents. Water Research, 72, 315–330.

  • Mutsuga, M., Kawamura, Y., Sugita-Konishi, Y., Hara-Kudo, Y., Takatori, K., Tanamoto, K., 2006. Migration of formaldehyde and acetaldehyde into mineral water in polyethylene terephthalate (PET) bottles. Food Additives and Contaminants 23 (2), 212e218.

  • Nagorka R, Koschorreck J (2020) Trends for plasticizers in German freshwater environments–evidence for the substitution of DEHP with emerging phthalate and non-phthalate alternatives. Environ Pollut 262:114237

    CAS  PubMed  Google Scholar 

  • Net S, Dumoulin D, El-Osmani R, Rabodonirina S, Ouddane B (2014) Case study of PAHs, Me-PAHs, PCBs, phthalates and pesticides contamination in the Somme River water. France International Journal of Environmental Research 8(4):1159–1170

    Google Scholar 

  • Nugnes R, Lavorgna M, Orlo E, Russo C, Isidori M (2022) Toxic impact of polystyrene microplastic particles in freshwater organisms. Chemosphere 299:134373

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver R, May E, Williams J (2005) The occurrence and removal of phthalates in a trickle filter STW. Water Res 39(18):4436–4444

    CAS  PubMed  Google Scholar 

  • Pang YH, Yue Q, Huang YY, Yang C, Shen XF (2020) Facile magnetization of covalent organic framework for solid-phase extraction of 15 phthalate esters in beverage samples. Talanta 206:120194

    CAS  PubMed  Google Scholar 

  • Raab P, Bogner FX (2020) Microplastics in the environment: raising awareness in primary education. Am Biol Teach 82(7):478–487

    Google Scholar 

  • Rodriguez-Narvaez OM, Goonetilleke A, Perez L, Bandala ER (2021) Engineered technologies for the separation and degradation of microplastics in water: A review. Chem Eng J 414:128692

    CAS  Google Scholar 

  • Roslev P, Vorkamp K, Aarup J, Frederiksen K, Nielsen PH (2007) Degradation of phthalate esters in an activated sludge wastewater treatment plant. Water Res 41(5):969–976

    CAS  PubMed  Google Scholar 

  • Salaudeen T, Okoh O, Agunbiade F, Okoh A (2018) Fate and impact of phthalates in activated sludge treated municipal wastewater on the water bodies in the Eastern Cape, South Africa. Chemosphere 203:336–344

    ADS  CAS  PubMed  Google Scholar 

  • Schmid P, Kohler M, Meierhofer R, Luzi S, Wegelin M (2008) Does the reuse of PET bottles during solar water disinfection pose a health risk due to the migration of plasticisers and other chemicals into the water? Water Res 42(20):5054–5060

    CAS  PubMed  Google Scholar 

  • Schmidt N, Castro-Jiménez J, Fauvelle V, Ourgaud M, Sempere R (2020) Occurrence of organic plastic additives in surface waters of the Rhône River (France). Environ Pollut 257:113637

    CAS  PubMed  Google Scholar 

  • Schmidt N, Castro-Jiménez J, Oursel B, Sempere R (2021) Phthalates and organophosphate esters in surface water, sediments and zooplankton of the NW Mediterranean Sea: Exploring links with microplastic abundance and accumulation in the marine food web. Environ Pollut 272:115970

    CAS  PubMed  Google Scholar 

  • Schymanski D, Goldbeck C, Humpf HU, Fürst P (2018) Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water. Water Res 129:154–162

    CAS  PubMed  Google Scholar 

  • Senathirajah K, Kemp A, Saaristo M, Ishizuka S, Palanisami T (2022) Polymer Prioritization Framework: a novel multi-criteria framework for source map** and characterizing the environmental risk of plastic polymers. J Hazard Mater 2022:128330

    Google Scholar 

  • Serôdio P, Nogueira JMF (2006) Considerations on ultra-trace analysis of phthalates in drinking water. Water Res 40(13):2572–2582

    PubMed  Google Scholar 

  • Shen M, Song B, Zhu Y, Zeng G, Zhang Y, Yang Y, Yi H (2020) Removal of microplastics via drinking water treatment: Current knowledge and future directions. Chemosphere 251:126612

    ADS  CAS  PubMed  Google Scholar 

  • Torres NI, Yu X, Padilla IY, Macchiavelli RE, Ghasemizadeh R, Kaeli D, Alshawabkeh AN (2018) The influence of hydrogeological and anthropogenic variables on phthalate contamination in eogenetic karst groundwater systems. Environ Pollut 237:298–307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Kaeppler A, Fischer D, Simmchen J (2019b) Photocatalytic TiO2 micromotors for removal of microplastics and suspended matter. ACS Appl Mater Interfaces 11(36):32937–32944

    CAS  PubMed  Google Scholar 

  • Wang, C., Zeng, T., Gu, C., Zhu, S., Zhang, Q., & Luo, X. (2019a). Photodegradation pathways of typical phthalic acid esters under UV, UV/TiO2, and UV-Vis/Bi2WO6 systems. Frontiers in Chemistry, 852.

  • Wiesinger H, Wang Z, Hellweg S (2021) Deep dive into plastic monomers, additives, and processing aids. Environ Sci Technol 55(13):9339–9351

    ADS  CAS  PubMed  Google Scholar 

  • Wu Q, Liu M, Ma X, Wang W, Wang C, Zang X, Wang Z (2012) Extraction of phthalate esters from water and beverages using a graphene-based magnetic nanocomposite prior to their determination by HPLC. Microchim Acta 177(1):23–30

    CAS  Google Scholar 

  • Xu Q, Huang QS, Luo TY, Wu RL, Wei W, Ni BJ (2021) Coagulation removal and photocatalytic degradation of microplastics in urban waters. Chem Eng J 416:129123

    CAS  Google Scholar 

  • Zhang XL, Niu HY, Zhang SX, Cai YQ (2010) Preparation of a chitosan-coated C18-functionalized magnetite nanoparticle sorbent for extraction of phthalate ester compounds from environmental water samples. Anal Bioanal Chem 397(2):791–798

    CAS  PubMed  Google Scholar 

  • Zhang K, Shi H, Peng J, Wang Y, **ong X, Wu C, Lam PK (2018a) Microplastic pollution in China’s inland water systems: a review of findings, methods, characteristics, effects, and management. Sci Total Environ 630:1641–1653

    ADS  CAS  PubMed  Google Scholar 

  • Zhang ZM, Zhang HH, Zou YW, Yang GP (2018b) Distribution and ecotoxicological state of phthalate esters in the sea-surface microlayer, seawater and sediment of the Bohai Sea and the Yellow Sea. Environ Pollut 240:235–247

    CAS  PubMed  Google Scholar 

  • Zhang ZM, Zhang J, Zhang HH, Shi XZ, Zou YW, Yang GP (2020) Pollution characteristics, spatial variation, and potential risks of phthalate esters in the water–sediment system of the Yangtze River estuary and its adjacent East China Sea. Environ Pollut 265:114913

    CAS  PubMed  Google Scholar 

  • Zhao H, Huang M, Wu J, Wang L, He H (2016) Preparation of Fe3O4@ PPy magnetic nanoparticles as solid-phase extraction sorbents for preconcentration and separationter of phthalic acid esters in water by gas chromatography–mass spectrometry. J Chromatogr B 1011:33–44

    CAS  Google Scholar 

  • Zhao X, Wang Y, Ji Y, Mei R, Chen Y, Zhang Z, Chen L (2022) Polystyrene nanoplastics demonstrate high structural stability in vivo: A comparative study with silica nanoparticles via SERS tag labeling. Chemosphere 300:134567

    ADS  CAS  PubMed  Google Scholar 

  • Zhao Z, Yao X, Ding Q, Gong X, Wang J, Tahir S, Zhang L (2022) A comprehensive evaluation of organic micropollutants (OMPs) pollution and prioritization in equatorial lakes from mainland Tanzania, East Africa. Water Res 2022:118400

    Google Scholar 

  • Zhuang S, Lv X, Pan L, Lu L, Ge Z, Wang J, Zhang C (2017) Benzotriazole UV 328 and UV-P showed distinct antiandrogenic activity upon human CYP3A4-mediated biotransformation. Environ Pollut 220:616–624

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijan Abadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abadi, B., Kakaei, K. The management of microplastics in urban and rural water resources: technological and socioeconomic arrangements and regulations. Sustain. Water Resour. Manag. 10, 4 (2024). https://doi.org/10.1007/s40899-023-00956-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40899-023-00956-6

Keywords

Navigation