Log in

The impact of Li-bearing pegmatite mining on the dissolved geochemical signature of a mountain stream in the Pampean ranges, Central Argentina

  • Original Article
  • Published:
Sustainable Water Resources Management Aims and scope Submit manuscript

Abstract

The contamination of aquatic systems due to mining activities constitutes a great concern of the global mining industry, but only a few studies have specifically addressed the impact of Li-pegmatite mining on water quality. In order to provide data on this type of systems, we assessed the impact of mining activities carried out in a lithium-rich pegmatite of the Sierras Pampeanas, central Argentina, on the chemical composition of stream waters draining the site. In addition, we evaluated the occurrence of Li background anomalies in stream waters at basin scale. To achieve these goals, we analyzed the dissolved major and trace element composition of water samples collected upstream and downstream of the mine, characterized spatial trends, and identified elemental anomalies in comparison with the background chemical composition of stream waters in nearby watersheds. The obtained results reveal that mining activities in the study area do not represent a source of pollution to stream waters draining the mine, while dissolved Li concentrations higher than those measured in nearby basins may be a useful mineralization indicator in the early stages of this type of Li ores exploration, as it points to potentially fertile protoliths for the generation of Li-enriched magma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All of the data included in this work were collected by the authors.

References

  • Almasoud FI, Usman AR, Al-Farraj AS (2015) Heavy metals in the soils of the Arabian Gulf coast affected by industrial activities: analysis and assessment using enrichment factor and multivariate analysis. Arab J Geosci 8:1691–1703

    Article  Google Scholar 

  • Angelelli V (1984) Yacimientos metalíferos de la República Argentina, vol I. CIC, Facultad de Ciencias naturales y Museo de La Plata – UNLP, pp 391

  • April R, Newton R, Coles LT (1986) Chemical weathering in two Adirondack watershed: past and present-day rates. Geol Soc Am Bull 97:1232–1238

    Article  Google Scholar 

  • Aurisicchio C, Fioravanti G, Grubessi O, Zanazzi PF (1988) Reappraisal of the crystal chemistry of beryl. Am Mineraol 73(7–8):826–837

    Google Scholar 

  • Baird RB, Eaton AD, Rice EW (eds) (2017) Standard methods for the examination of water and wastewater. American Public Health Association, American Water Works Association and Water Environment Federation, EE.UU, Washington, DC, p 1796

    Google Scholar 

  • Barroilhet SA, Ghaemi SN (2020) When and how to use lithium. Acta Psychiatr Scand. https://doi.org/10.1111/acps.13202

    Article  Google Scholar 

  • Bern CR, Walton-Day K, Naftz DL (2019) Improved enrichment factor calculations through principal component analysis: examples from soils near breccia pipe uranium mines, Arizona, USA. Environ Pollut 248:90–100

    Article  Google Scholar 

  • Birch G, Davies K (2003) A scheme for assessing human impact and sediment quality in coastal waterways. Coastal GIS 2003: an integrated approach to Australian coastal issues. University of Wollongong, Wollongong

    Google Scholar 

  • Bonalumi A, Martino RD, Sfragulla J, Baldo EG, Zarco J, Carignano CA, Tauber A, Kraemer P, Escayola M,Cabanillas A, Juri E, Torres B (1998) Hoja geológica 3166-IV, 1:250,000, Villa Dolores. Bulletin Instituto de Geología y Recursos Minerales, SEGEMAR, Argentina, pp 250

  • Borgnino L, Garcia MG, Bia G, Stupar YV, Le Coustumer P, Depetris PJ (2013) Mechanisms of fluoride release in sediments of Argentina’s central region. Sci Total Environ 443:245–255

    Article  Google Scholar 

  • Campodonico VA, Martinez JO, Verdecchia SO, Pasquini AI, Depetris PJ (2014) Weathering assessment in the Achala Batholith of the Sierra de Comechingones, Córdoba. Central Argentina i: granite-Regolith Fractionation Catena 123:121–134

    Google Scholar 

  • Campodonico VA, Pasquini AI, Lecomte KL, Garcia MG, Depetris PJ (2019) Chemical weathering in subtropical basalt-derived laterites: a mass balance interpretation (Misiones, NE Argentina). CATENA 173:352–366

    Article  Google Scholar 

  • Carson MA, Kirkby MJ (1972) Hillslope form and process. Science 178:1083–1084

    Google Scholar 

  • Černý P, Ercit TS (2005) The classification of granitic pegmatites revisited. Can Mineral 43:2005–2026

    Article  Google Scholar 

  • Chen T-B, Zheng Y-M, Lei M, Huang Z-C, Wu H-T, Chen H, Fan K-K, Yu K, Wu X, Qin-Zheng T (2005) Assessment of heavy metal pollution in surface soils of urban parks in Bei**g, China. Chemosphere 60:542–551

    Article  Google Scholar 

  • Chordia M, Wickerts S, Nordelof A, Arvidsson R (2022) Life cycle environmental impacts of current and future battery-grade lithium supply from brine and spodumene. Resour Conserv Recycling 187:106634. https://doi.org/10.1016/j.resconrec.2022.106634

    Article  Google Scholar 

  • Código Alimentario Argentino (CAA) (2012) Capítulo XII - Bebidas Hídricas, Agua y Agua Gasificadas. https://www.argentina.gob.ar/anmat/codigoalimentario. Accessed 28 Sept 2022

  • Colombo F, Lira R (2000) Pucherita en la pegmatita Las Tapias, Departamento San Javier, Córdoba. In: Schalamuk I, de Brodtkorb M, Etcheverry R (eds.) Mineralogía y Metalogenia 2000. INREMI, La Plata, Publicación 6:488–490

  • Colombo F, Pannunzio Miner EV, Carbonio RE, Sfragulla J, Lira R (2004) La morganita de la pegmatita Las Tapias, Córdoba (Argentina): un caso de berilo no hexagonal. In: Brodtkorb, MK, de Koukharsky M, Quenardelle S, Montenegro T (eds) Avances en Mineralogía, Metalogenia y Petrología 2004, Río Cuarto, pp 39–44

  • da Silva YJ, do Nascimento CW, Biondi CM, van Straaten P, da Silva YJ, de Souza Jr. VS, de Trezena Araújo J, Alcantara VC, da Silva FL, da Silva RC (2020) Concentrations of major and trace elements in soil profiles developed over granites across a climosequence in northeastern Brazil. CATENA 193:104641

    Article  Google Scholar 

  • Dahlquist JA, Alasino P, Eby N, Galindo C, Casquet C (2010) Fault controlled Carboniferous A-type magmatism in the proto-Andean foreland (Sierras Pampeanas, Argentina): geochemical constraints and petrogenesis. Lithos 115:65–81

    Article  Google Scholar 

  • Dahlquist JA, Alasino PH, Bello C (2014) Devonian F-rich peraluminous A-type magmatism in the proto-Andean foreland (Sierras Pampeanas, Argentina): geochemical constraints and petrogenesis from the western-central region of the Achala batholith. Mineral Petrol 108:391–417

    Article  Google Scholar 

  • Dan SF, Umoh UU, Osabor VN (2014) Seasonal variation of enrichment and contamination of heavy metals in the surface water of Qua Iboe River Estuary and adjoining creeks, South-South Nigeria. J Oceanogr Mar Sci 5(6):45–54

    Article  Google Scholar 

  • Dasso CM, Piovano EL, Pasquini AI, Córdoba FE, Lecomte KL, Guerra L, Campodónico VA (2014) Recursos Hídricos Superficiales. In: Martino RD, Guereschi AB (eds) Relatorio XIX Congreso Geologico Argentino: Geología y Recursos Naturales De La Provincia De Córdoba, Asociación Geológica Argentina, pp 1209–1231

  • Formica SM, Sacchi GA, Campodonico VA, Pasquini AI, Cioccale MA (2015) Modelado de calidad de aguas en cuencas de montaña con impacto antrópico. Caso de estudio: Sierra Chica de Córdoba, Argentina. Revista Internacional De Contaminación Ambiental 31(4):327–341

    Google Scholar 

  • Fu W, Lia X, Fenga Y, Fenga M, Penga Z, Yua H, Lin H (2019) Chemical weathering of S-type granite and formation of rare earth element (REE)-rich regolith in South China: critical control of lithology. Chem Geol 520:33–51

    Article  Google Scholar 

  • Gaillardet J, Dupré B, Louvat P, Allegre CJ (1999) Global silicate weathering and CO2 consumption rates derived from the chemistry of large rivers. Chem Geol 159:3–30

    Article  Google Scholar 

  • Gaillardet J, Viers J, Dupré B (2011) Trace elements in river waters. In: Holland H, Turekian K (eds) Treatise on geochemistry. Elsevier Academic Press, Cambridge, pp 293–340

    Google Scholar 

  • Galeschuk CR, Vanstone PJ (2005) Exploration for buried rare-element pegmatites in the Bernic lake area of southeastern Manitoba. GAC Short Course Notes 17:159–173

    Google Scholar 

  • Galliski MÁ, Černý P (2006) Geochemistry and structural state of columbite-group minerals in granitic pegmatites of the Pampean Ranges, Argentina. Can Mineral 44(3):645–666

    Article  Google Scholar 

  • Galliski MÁ, Márquez-Zavalía MF, Roda-Robles E, von Quadt A (2022) The Li-bearing pegmatites from the Pampean Pegmatite Province, Argentina: metallogenesis and resources. Minerals 12:841

    Article  Google Scholar 

  • Galliski MÁ (1999) Mina Las Tapias y otras pegmatitas del distrito Altautina, Córdoba. In: Zappettini EO (ed) Recursos Minerales de la República Argentina, Instituto de Geología y Recursos Minerales SEGEMAR, Anales 35:357–360

  • García MG, Lecomte KL, Stupar Y, Formica SM, Barrionuevo M, Vesco M, Gallará R, Ponce R (2012) Geochemistry and health aspects of F-rich mountainous streams and groundwaters from Sierras Pampeanas de Córdoba, Argentina. Environ Earth Sci 65:535–545

    Article  Google Scholar 

  • García MG, Borgnino L, Bia G, Depetris PJ (2014) Mechanisms of arsenic and fluoride release from Chacopampean sediments (Argentina). Int J Environ Health 7(1):41–57

    Article  Google Scholar 

  • García MG, Borda LG, Godfrey LV, López Steinmetz RL, Losada-Calderon A (2020) Characterization of lithium cycling in the Salar De Olaroz, Central Andes, using a geochemical and isotopic approach. Chem Geol 531:119340

    Article  Google Scholar 

  • García MG, Lecomte KL, Depetris PJ (2022) Natural and anthropogenic sources of solutes in the wet precipitation of a densely populated city of Southern South America. Chemosphere 287:132307

    Article  Google Scholar 

  • Garret DE (2004) Handbook of lithium and natural calcium chloride—their deposits, processing, uses and properties. Elsevier, Academic Press, Amsterdam

    Google Scholar 

  • Gay, HD, Sfragulla J, Becchio R (1990) Micas litíferas, microlita y elbaita en los afloramientos pegmatíticos "La Juana", departamento San Javier, Córdoba, Argentina. 11° Congreso Geológico Argentino, Proceedings, 1:416–421. San Juan

  • Gay HD, Lira R, Martínez E, Sfragulla J (1994) Hallazgo de clinobisvanita y duhamelita: nuevos vanadatos para la Argentina en la provincia de Córdoba. 2° Jornadas de Mineralogía y Metalogenia, Instituto de Recursos Minerales, UNLP, Publicación, vol 3, pp 141–146

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090

    Article  Google Scholar 

  • Godfrey LV, Álvarez-Amado F (2020) Volcanic and Saline Lithium Inputs to the Salar de Atacama. Mineralogy 10:201

    Google Scholar 

  • Goldsmith ST, Carey AE, Johnson BM, Welch SA, Lyons WB, McDowell WH, Pigott JS (2010) Stream geochemistry, chemical weathering and CO2 consumption potential of andesitic terrains, Dominica, Lesser Antilles. Geochim Cosmochim Acta 74:85–103

    Article  Google Scholar 

  • González Bonorino F (1950) Algunos problemas geológicos de Sierras Pampeanas. Revista de la Asociación Geológica Argentina 5(3):81–110

    Google Scholar 

  • Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch MD (2012) Nomenclature of the amphibole supergroup. Am Miner 97(11–12):2031–2048

    Article  Google Scholar 

  • INDEC (2010) Instituto Nacional de Estadística y Censos, República Argentina. CENSO 2010. https://www.indec.gob.ar/indec/web/Nivel4-Tema-2-41-135

  • Iqbal J, Shah MH (2015) Study of selected metals distribution, source apportionment, and risk assessment in suburban soil. Pak J Chem. https://doi.org/10.1155/2015/481324. (Article ID 481324)

    Article  Google Scholar 

  • Isacks BL (1988) Uplift of the Central Andean Plateau and bending of the Bolivian orocline. J Geophys Res 93(B4):3211–3231

    Article  Google Scholar 

  • Islam S, Ahmedc K, Raknuzzamanb M, Al- Mamunb H, Islame MK (2015) Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a develo** country. Ecol Indic 48:282–291

    Article  Google Scholar 

  • Jordan T, Allmendinger R (1986) The Sierras Pampeanas of Argentina; a modern analogue of the Rocky Mountain foreland deformation. Am J Sci 286:737–764

    Article  Google Scholar 

  • Kesler SE, Gruber PW, Medina PA, Keoleian GA, Everson MP, Wallington TJ (2012) Global lithium resources: relative importance of pegmatite, brine and other deposits. Ore Geol Rev 48:55–69

    Article  Google Scholar 

  • Lecomte KL (2006) Control Geomorfológico en la Geoquímica de los ríos de Montaña, Sierras Pampeanas, Provincia de Córdoba, Argentina. Tesis Doctoral inédita. Facultad de Ciencias Exactas, Físicas y Naturales. Universidad Nacional de Córdoba, Argentina

  • Lecomte KL, Pasquini AI, Depetris PJ (2005) Mineral Weathering in a Semiarid Mountain River: its assessment through PHREEQC inverse modeling. Aquat Geochem 11:173–194

    Article  Google Scholar 

  • Linares E (1959) Los métodos geocronológicos y algunas edades de minerales de la Argentina, obtenidos por medio de la relación plomo-uranio. Revista de la Asociación Geológica Argentina 14(3–4):181–217

    Google Scholar 

  • Lindsey BD, Belitz K, Cravotta CA III, Toccalino PL, Dubrovsky M (2021) Science of the Total Environment, v. 767. https://doi.org/10.1016/j.scitotenv.2020.144691

  • London D (2008) Pegmatites. The Canadian Mineralogist, Special Publication 10

  • London D, Burt DM (1982) Alteration of spodumene, montebrasite and lithiophilite in pegmatites of the White Picacho District, Arizona. Am Miner 67:97–113

    Google Scholar 

  • López Steinmetz RL, Salvi S, García MG, Peralta Arnold Y, Béziat D, Franco G, Constantini O, Córdoba FE, Caffe PJ (2018) Northern Puna Plateau-scale survey of Li brine-type deposits in the Andes of NW Argentina. J Geochem Explor 190:26–38

    Article  Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst. https://doi.org/10.1029/2000GC000109

    Article  Google Scholar 

  • Meybeck M (2011) Global Occurrence of Major Elements in Rivers. In: Holland H, Turekian K (eds) Treatise on geochemistry. Elsevier Academic Press, Cambridge, pp 277–292

    Google Scholar 

  • Nguyen TH, Won S, Ha M-G, Nguyen DD, Kang HY (2021) Bioleaching for environmental remediation of toxic metals and metalloids: a review on soils, sediments, and mine tailings. Chemosphere 282:131108

    Article  Google Scholar 

  • Oliva P, Dupré B, Martin F, Viers J (2004) The role of trace minerals in chemical weathering in a high-elevation granitic watershed (Estibère, France): chemical and mineralogical evidence. Geochim Cosmochim Acta 68:2223–2244

    Article  Google Scholar 

  • Pasquini AI, Formica SM, Sacchi GA (2012) Hydrochemistry and nutrients dynamic in the Suquía River urban catchment’s, Córdoba, Argentina. Environ Earth Sci 65(2):453–467

    Article  Google Scholar 

  • Petelet-Giraud E, Klaver G, Negrel P (2009) Natural vs. anthropogenic sources in the surface-and groundwater dissolved load of the Dommel River (Meuse basin): constraints by boron and strontium isotopes and gadolinium anomaly. J Hydrol 369:336–349

    Article  Google Scholar 

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water analyses. Am Geophys Union Trans 25:914–923

    Article  Google Scholar 

  • Porta G, Gay H, Dorais M, Lira R (1994) Holmquistita en la pegmatita Las Tapias, Córdoba, mineralogía y condiciones genéticas. 2° Reunión de Mineralogía y Metalogenia, Instituto de Recursos Minerales, UNLP. Publicación 3:315–324

  • Rapela CW, Pankhurst RJ, Casquet C, Baldo EG, Saavedra J, Galindo C, Fanning CM (1998) The Pampean orogeny of the southern proto-Andes: evidence for Cambrian continental collision in the Sierras de Córdoba. In: Pankhurst RJ, Rapela CW (eds) The Proto-Andean Margin of Gondwana. Geological Society of London Special Publication 142, pp 181–217

  • Rapela CW, Baldo EG, Pankhurst RJ, Fanning CM (2008) The Devonian Achala Batholith of the Sierras Pampeanas: F-rich, aluminous A-type granites. Actas VI South American Symposium on Isotope Geology, pp 1–8,San Carlos de Bariloche, Argentina

  • Raschke MB, Stern CR, Anderson EJ, Alexandra Skewes M, Lang Farmer G, Allaz JM, Persson PM (2021) Bulk composition of a zoned rare-earth minerals-bearing pegmatite in the Pikes Peak granite batholith near Wellington Lake, central Colorado, USA. Rocky Mt Geol 56(1):1–18

    Article  Google Scholar 

  • Scott LM, Pain CF (2009) Regolith science. Sciro Publishing, Springer, Clayton

    Book  Google Scholar 

  • Selvaggi R, Damianic B, Goretti E, Pallottini M, Petroselli C, Moroni B, La Porta G, Cappelletti D (2020) Evaluation of geochemical baselines and metal enrichment factor values through high ecological quality reference points: a novel methodological approach. Environ Sci Pollut Res 27:930–940

    Article  Google Scholar 

  • Simmons W, Falster A, Webber K, Roda-Robles E, Boudreaux AP, Grassi LR, Freeman G (2016) Bulk composition of Mt. Mica pegmatite, Maine, USA: implications for the origin of an LCT type pegmatite by anatexis. Can Mineral 54(4):1053–1070

    Article  Google Scholar 

  • Tischendorf G, Förster HJ, Gottesmann B (2001) Minor-and trace-element composition of trioctahedral micas: a review. Mineral Mag 65(2):249–276

    Article  Google Scholar 

  • Trueman, DL, Černý P (1982) Exploration for rare element granitic pegmatites. In: Černý P (ed) Granitic pegmatites in science and industry. Short course handbook, vol 8. Mineralogical Association of Canada, pp 463–493

  • Uran GM, Pasquini AI, Giampaoli V, Larrovere MA, Cortés Montiel MF, Pautasso RE (2022) Hydrochemistry of mountain rivers in the Sierra de Velasco, La Rioja, Argentina: implications on dental fluorosis through statistical modeling. Sustain Water Resour Manag 8:167

    Article  Google Scholar 

  • Varas R, Kirschbaum A, Sfragulla J (1997) Petrografía y geoquímica del plutón granítico “Loma de La Población”, sierras de Córdoba. Revista de la Asociación Geológica Argentina 52:33–40

    Google Scholar 

  • Webb HN, Girty GH (2016) Residual regolith derived from the biotite-controlled weathering of Cretaceous tonalite–quartz diorite, Peninsular Ranges, southern California, USA: a case study. CATENA 137:459–482

    Article  Google Scholar 

  • White AF, Bullen TD, Vivit DV, Schulz M, Clow DW (1999) The role of disseminated calcite in the chemical weathering of granitoid rocks. Geochim Cosmochim Acta 63:1939–1953

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank Mariana Correa for her collaboration in the fieldwork. M. Marqués acknowledges a doctoral fellowship from CONICET. AIP, MGG, VAC, FC, DMG, and KLL are members of CICyT, CONICET. We are thankful to two anonymous referees for their suggestions, and to Jim Lamoreaux for the editorial handling.

Funding

This work was funded by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina, PIP 112-201701-00088), the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT-2017-2026, PICT 2018-2502, PICT-2018-4206, PICT 2020-2891), and the Universidad Nacional de Córdoba (PRIMAR UNC 32520170100163CB, SECyT-UNC 33620180100385CB).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was contributed by AIP, MGG, VAC, FC, and KLL. Methodology was contributed by MM, AIP, and KLL. Formal analysis and investigation were contributed by MM, AIP, MGG, VAC, FC, and KLL. Writing—original draft preparation, was contributed by MM, AIP, MGG, VAC, FC, and KLL. Writing—review and editing, was contributed by AIP, MGG, VAC, FC, DMG, and KLL. Funding acquisition was contributed by AIP, MGG, VAC, FC, DMG, and KLL. Supervision was contributed by AIP, MGG, VAC, FC, DMG, and KLL.

Corresponding author

Correspondence to Karina L. Lecomte.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to participation

This research does not involve humans and/or animal risks.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marqués, M., Pasquini, A.I., García, M.G. et al. The impact of Li-bearing pegmatite mining on the dissolved geochemical signature of a mountain stream in the Pampean ranges, Central Argentina. Sustain. Water Resour. Manag. 9, 101 (2023). https://doi.org/10.1007/s40899-023-00878-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40899-023-00878-3

Keywords

Navigation