Log in

Abstract

Purpose

The majority of adult tissues are limited in self-repair and regeneration due to their poor intrinsic regenerative capacity. It is widely recognized that stem cells are present in almost all adult tissues, but the natural regeneration in adult mammals is not sufficient to recover function after injury or disease. Historically, 3 classes of stem cells have been defined: embryonic stem cells (ESCs), adult mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs). Here, we have defined a fourth fully engineered class: the synthetic artificial stem cell (SASC). This review aims to discuss the applications of these stem cell classes in musculoskeletal regenerative engineering.

Method

We screened articles in PubMed and bibliographic search using a combination of keywords. Relevant and high-cited articles were chosen for inclusion in this narrative review.

Results

In this review, we discuss the different classes of stem cells that are biologically derived (ESCs and MSCs) or semi-engineered/engineered (iPSCs, SASC). We also discuss the applications of these stem cell classes in musculoskeletal regenerative engineering. We further summarize the advantages and disadvantages of using each of the classes and how they impact the clinical translation of these therapies.

Conclusion

Each class of stem cells has advantages and disadvantages in preclinical and clinical settings. We also propose the engineered SASC class as a potentially disease-modifying therapy that harnesses the paracrine action of biologically derived stem cells to mimic regenerative potential.

Lay Summary

The majority of adult tissues are limited in self-repair and regeneration, even though stem cells are present in almost all adult tissues. Historically, 3 classes of stem cells have been defined: embryonic stem cells (ESCs), adult mesenchymal stem cells (MSCs), and induced pluripotent stem cells (iPSCs). Here, we have defined a fourth, fully engineered class: the synthetic artificial stem cell (SASC). In this review, we discuss the applications of each of these stem cell classes in musculoskeletal regenerative engineering. We further summarize the advantages and disadvantages of using each of these classes and how they impact the clinical translation of these therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhao A, Qin H, Fu X. What determines the regenerative capacity in animals? Bioscience. 2016;66:735–46. https://doi.org/10.1093/biosci/biw079. Oxford Academic.

    Article  Google Scholar 

  2. Peach MS, Ramos DM, James R, Morozowich NL, Mazzocca AD, Doty SB, et al. Engineered stem cell niche matrices for rotator cuff tendon regenerative engineering. PLoS One. 2017;12:e0174789. https://doi.org/10.1371/journal.pone.0174789. Public Library of Science.

    Article  CAS  Google Scholar 

  3. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76. https://doi.org/10.1016/j.cell.2006.07.024. Elsevier.

    Article  CAS  Google Scholar 

  4. Mousaei Ghasroldasht M, Seok J, Park HS, Liakath Ali FB, Al-Hendy A. Stem cell therapy: from idea to clinical practice. Int J Mol Sci. 2022;23:2850. https://doi.org/10.3390/ijms23052850.

    Article  Google Scholar 

  5. Yang YHK, Ogando CR, Wang See C, Chang TY, Barabino GA. Changes in phenotype and differentiation potential of human mesenchymal stem cells aging in vitro. Stem Cell Res Ther. 2018;9:131. https://doi.org/10.1186/s13287-018-0876-3. BioMed Central Ltd.

    Article  CAS  Google Scholar 

  6. Henriques D, Moreira R, Schwamborn J, Pereira de Almeida L, Mendonça LS. Successes and hurdles in stem cells application and production for brain transplantation. Front Neurosci. 2019;13. https://doi.org/10.3389/fnins.2019.01194

  7. Ikehara S. Grand challenges in stem cell treatments. Front Cell Dev Biol. 2013;1. https://doi.org/10.3389/fcell.2013.00002

  8. Rezabakhsh A, Sokullu E, Rahbarghazi R. Applications, challenges and prospects of mesenchymal stem cell exosomes in regenerative medicine. Stem Cell Res Ther. 2021;12:521. https://doi.org/10.1186/s13287-021-02596-z. BioMed Central Ltd.

    Article  CAS  Google Scholar 

  9. Stevens LC, Varnum DS. The development of teratomas from parthenogenetically activated ovarian mouse eggs. Dev Biol. 1974;37:369–80. https://doi.org/10.1016/0012-1606(74)90155-9. Academic Press.

    Article  CAS  Google Scholar 

  10. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78:7634–8. https://doi.org/10.1073/pnas.78.12.7634. Proceedings of the National Academy of Sciences.

    Article  CAS  Google Scholar 

  11. Thomson JA. Embryonic stem cell lines derived from human blastocysts. Science (80-). 1998;282:1145–7. https://doi.org/10.1126/science.282.5391.1145. American Association for the Advancement of Science.

    Article  CAS  Google Scholar 

  12. De Los AA, Ferrari F, ** R, Fujiwara Y, Benvenisty N, Deng H, et al. Hallmarks of pluripotency. Nature. 2015;525:469–78. https://doi.org/10.1038/nature15515. Nature Publishing Group.

    Article  CAS  Google Scholar 

  13. Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J, Stahl M, et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature. 1988;336:688–90. https://doi.org/10.1038/336688a0. Nature Publishing Group.

    Article  CAS  Google Scholar 

  14. Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, et al. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature. 1988;336:684–7. https://doi.org/10.1038/336684a0. (Nature Publishing Group.

    Article  CAS  Google Scholar 

  15. Shen MM, Leder P. Leukemia inhibitory factor is expressed by the preimplantation uterus and selectively blocks primitive ectoderm formation in vitro. Proc Natl Acad Sci U S A. 1992;89:8240–4. https://doi.org/10.1073/pnas.89.17.8240. Proceedings of the National Academy of Sciences.

    Article  CAS  Google Scholar 

  16. Ying QL, Nichols J, Chambers I, Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell. 2003;115:281–92. https://doi.org/10.1016/S0092-8674(03)00847-X. Cell Press.

    Article  CAS  Google Scholar 

  17. Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA. Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods. 2005;2:185–90. https://doi.org/10.1038/nmeth744. Nature Publishing Group.

    Article  CAS  Google Scholar 

  18. Itskovitz-Eldor J, Schuldiner M, Karsenti D, Eden A, Yanuka O, Amit M, et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med. 2000;6:88–95. https://doi.org/10.1007/bf03401776. BioMed Central.

    Article  CAS  Google Scholar 

  19. Bradley A, Evans M, Kaufman MH, Robertson E. Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature. 1984;309:255–6. https://doi.org/10.1038/309255a0. Nature Publishing Group.

    Article  CAS  Google Scholar 

  20. Kurosawa H. Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. J Biosci Bioeng. 2007;103:389–98. https://doi.org/10.1263/jbb.103.389. Elsevier.

    Article  CAS  Google Scholar 

  21. Lou YJ, Liang XG. Embryonic stem cell application in drug discovery. Acta Pharmacol Sin. 2011;32:152–9. https://doi.org/10.1038/aps.2010.194. Nature Publishing Group.

    Article  CAS  Google Scholar 

  22. Lancaster MA, Knoblich JA. Organogenesisin a dish: modeling development and disease using organoid technologies. Science (80-). 2014;345:1247125. https://doi.org/10.1126/science.1247125. American Association for the Advancement of Science.

    Article  CAS  Google Scholar 

  23. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature. 2011;472:51–8. https://doi.org/10.1038/nature09941. Nature Publishing Group.

    Article  CAS  Google Scholar 

  24. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–9. https://doi.org/10.1038/nature12517. Nature Publishing Group.

    Article  CAS  Google Scholar 

  25. Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE, Tolle K, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature. 2011;470:105–10. https://doi.org/10.1038/nature09691. Nature Publishing Group.

    Article  CAS  Google Scholar 

  26. Takasato M, Er PX, Becroft M, Vanslambrouck JM, Stanley EG, Elefanty AG, et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat Cell Biol. 2014;16:118–26. https://doi.org/10.1038/ncb2894. >Nature Publishing Group.

    Article  CAS  Google Scholar 

  27. Mori S, Sakakura E, Tsunekawa Y, Hagiwara M, Suzuki T, Eiraku M. Self-organized formation of develo** appendages from murine pluripotent stem cells. Nat Commun. 2019;10:3802. https://doi.org/10.1038/s41467-019-11702-y. Nature Publishing Group.

    Article  CAS  Google Scholar 

  28. Yamanaka S. Pluripotent stem cell-based cell therapy—promise and challenges. Cell Stem Cell. 2020;27:523–31. https://doi.org/10.1016/j.stem.2020.09.014. Cell Press.

    Article  CAS  Google Scholar 

  29. Petrigliano FA, Liu NQ, Lee S, Tassey J, Sarkar A, Lin Y, et al. Long-term repair of porcine articular cartilage using cryopreservable, clinically compatible human embryonic stem cell-derived chondrocytes. npj Regen Med. 2021;6:77. https://doi.org/10.1038/s41536-021-00187-3.

    Article  CAS  Google Scholar 

  30. Albini S, Coutinho P, Malecova B, Giordani L, Savchenko A, Forcales SV, et al. Epigenetic reprogramming of human embryonic stem cells into skeletal muscle cells and generation of contractile myospheres. Cell Rep. 2013;3:661–70. https://doi.org/10.1016/j.celrep.2013.02.012.

    Article  CAS  Google Scholar 

  31. Tachibana M, Amato P, Sparman M, Gutierrez NM, Tippner-Hedges R, Ma H, et al. Human embryonic stem cells derived by somatic cell nuclear transfer. Cell. 2013;153:1228–38. https://doi.org/10.1016/j.cell.2013.05.006. Elsevier B.V.

    Article  CAS  Google Scholar 

  32. Zhu K, Wu Q, Ni C, Zhang P, Zhong Z, Wu Y, et al. Lack of remuscularization following transplantation of human embryonic stem cell-derived cardiovascular progenitor cells in infarcted nonhuman primates. Circ Res. 2018;122:958–69. https://doi.org/10.1161/CIRCRESAHA.117.311578. Lippincott Williams and Wilkins.

    Article  CAS  Google Scholar 

  33. Basma H, Soto-Gutiérrez A, Yannam GR, Liu L, Ito R, Yamamoto T, et al. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. Gastroenterology. 2009;136:990-999.e4. https://doi.org/10.1053/j.gastro.2008.10.047. W.B. Saunder.

    Article  CAS  Google Scholar 

  34. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26:443–52. https://doi.org/10.1038/nbt1393. Nature Publishing Group.

    Article  CAS  Google Scholar 

  35. Roy NS, Cleren C, Singh SK, Yang L, Beal MF, Goldman SA. Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med. 2006;12:1259–68. https://doi.org/10.1038/nm1495. Nature Publishing Group.

    Article  CAS  Google Scholar 

  36. Kerr CL, Letzen BS, Hill CM, Agrawal G, Thakor NV, Sterneckert JL, et al. Efficient differentiation of human embryonic stem cells into oligodendrocyte progenitors for application in a rat contusion model of spinal cord injury. Int J Neurosci. 2010;120:305–13. https://doi.org/10.3109/00207450903585290. Taylor & Francis.

    Article  CAS  Google Scholar 

  37. Wysoczynski M. A realistic appraisal of the use of embryonic stem cell-based therapies for cardiac repair. Eur Heart J. 2020;41:2397–404. https://doi.org/10.1093/eurheartj/ehz787. Oxford Academic.

    Article  CAS  Google Scholar 

  38. Trounson A, DeWitt ND. Pluripotent stem cells progressing to the clinic. Nat Rev Mol Cell Biol. 2016;17:194–200. https://doi.org/10.1038/nrm.2016.10. Nature Publishing Group.

    Article  CAS  Google Scholar 

  39. Dulak J, Szade K, Szade A, Nowak W, Józkowicz A. Adult stem cells: hopes and hypes of regenerative medicine. Acta Biochim Pol. 2015;62:329–37. https://doi.org/10.18388/abp.2015_1023.

    Article  CAS  Google Scholar 

  40. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyvk AF, Keiliss-Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues: cloning in vitro and retransplantation in vivo. Transplantation. 1974;17:331–40. https://doi.org/10.1097/00007890-197404000-00001.

    Article  CAS  Google Scholar 

  41. Friedenstein AJ, Gorskaja UF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol. 1976;4:267–74.

    CAS  Google Scholar 

  42. Caplan AI. Mesenchymal stem cells. J Orthop Res. 1991;9:641–50. https://doi.org/10.1002/jor.1100090504. John Wiley & Sons, Ltd.

    Article  CAS  Google Scholar 

  43. Caplan AI. The mesengenic process. Clin Plast Surg. 1994;21:429–35. https://doi.org/10.1016/s0094-1298(20)31020-8. Elsevier.

    Article  CAS  Google Scholar 

  44. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 2001;7:211–28. https://doi.org/10.1089/107632701300062859. Mary Ann Liebert, Inc.

    Article  CAS  Google Scholar 

  45. Najar M, Raicevic G, Boufker HI, Kazan HF, De BC, Meuleman N, et al. Mesenchymal stromal cells use PGE2 to modulate activation and proliferation of lymphocyte subsets: combined comparison of adipose tissue, Wharton’s Jelly and bone marrow sources. Cell Immunol. 2010;264:171–9. https://doi.org/10.1016/j.cellimm.2010.06.006. Academic Press.

    Article  CAS  Google Scholar 

  46. Lee OK, Kuo TK, Chen WM, Der LK, Hsieh SL, Chen TH. Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood. 2004;103:1669–75. https://doi.org/10.1182/blood-2003-05-1670.

    Article  CAS  Google Scholar 

  47. Ogata Y, Mabuchi Y, Yoshida M, Suto EG, Suzuki N, Muneta T, et al. Purified human synovium mesenchymal stem cells as a good resource for cartilage regeneration. Wagner W, editor. PLoS One. 2015;10:e0129096. https://doi.org/10.1371/journal.pone.0129096

  48. Lysy PA, Smets F, Sibille C, Najimi M, Sokal EM. Human skin fibroblasts: from mesodermal to hepatocyte-like differentiation. Hepatology. 2007;46:1574–85. https://doi.org/10.1002/hep.21839.

    Article  CAS  Google Scholar 

  49. Kang Y, Kim S, Bishop J, Khademhosseini A, Yang Y. The osteogenic differentiation of human bone marrow MSCs on HUVEC-derived ECM and β-TCP scaffold. Biomaterials. 2012;33:6998–7007. https://doi.org/10.1016/j.biomaterials.2012.06.061.

    Article  CAS  Google Scholar 

  50. Beltrami AP, Cesselli D, Bergamin N, Marcon P, Rigo S, Puppato E, et al. Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood. 2007;110:3438–46. https://doi.org/10.1182/blood-2006-11-055566.

    Article  CAS  Google Scholar 

  51. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7. https://doi.org/10.1080/14653240600855905.

    Article  CAS  Google Scholar 

  52. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science (80-). 1999;284:143–7. https://doi.org/10.1126/science.284.5411.143.

    Article  CAS  Google Scholar 

  53. Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, et al. Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med. 2005;54:132–41. https://doi.org/10.2302/kjm.54.132.

    Article  CAS  Google Scholar 

  54. Docheva D, Popov C, Mutschler W, Schieker M. Human mesenchymal stem cells in contact with their environment: surface characteristics and the integrin system. J Cell Mol Med. 2007;11:21–38. https://doi.org/10.1111/j.1582-4934.2007.00001.x.

    Article  CAS  Google Scholar 

  55. Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PCDP, Pinter J, et al. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science (80-). 2013;341:1240104. https://doi.org/10.1126/science.1240104.

    Article  CAS  Google Scholar 

  56. Alakpa EV, Jayawarna V, Lampel A, Burgess KV, West CC, Bakker SCJ, et al. Tunable supramolecular hydrogels for selection of lineage-guiding metabolites in stem cell cultures. Chem. 2016;1:298–319. https://doi.org/10.1016/j.chempr.2016.07.001.

    Article  CAS  Google Scholar 

  57. Dingal PCDP, Bradshaw AM, Cho S, Raab M, Buxboim A, Swift J, et al. Fractal heterogeneity in minimal matrix models of scars modulates stiff-niche stem-cell responses via nuclear exit of a mechanorepressor. Nat Mater. 2015;14:951–60. https://doi.org/10.1038/nmat4350.

    Article  CAS  Google Scholar 

  58. Yang C, Tibbitt MW, Basta L, Anseth KS. Mechanical memory and dosing influence stem cell fate. Nat Mater. 2014;13:645–52. https://doi.org/10.1038/nmat3889.

    Article  CAS  Google Scholar 

  59. Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006;126:677–89. https://doi.org/10.1016/j.cell.2006.06.044.

    Article  CAS  Google Scholar 

  60. Daneshmandi L, Shah S, Jafari T, Bhattacharjee M, Momah D, Saveh-Shemshaki N, et al. Emergence of the stem cell secretome in regenerative engineering. Trends Biotechnol. 2020;38:1373–84. https://doi.org/10.1016/j.tibtech.2020.04.013.

    Article  CAS  Google Scholar 

  61. Caplan AI. Adult mesenchymal stem cells: when, where, and how. Stem Cells Int. 2015;2015:1–6. https://doi.org/10.1155/2015/628767.

    Article  CAS  Google Scholar 

  62. Ding Y, Bushell A, Wood KJ. Mesenchymal stem-cell immunosuppressive capabilities: therapeutic implications in islet transplantation. Transplantation. 2010;89:270–3. https://doi.org/10.1097/TP.0b013e3181c6ffbe.

    Article  CAS  Google Scholar 

  63. Di NM, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood. 2002;99:3838–43. https://doi.org/10.1182/blood.V99.10.3838.

    Article  Google Scholar 

  64. Rawat S, Gupta S, Mohanty S. Mesenchymal stem cells modulate the immune system in develo** therapeutic interventions. IntechOpen. 2019. https://doi.org/10.5772/intechopen.80772.

    Article  Google Scholar 

  65. Ramos-Zúñiga R, González-Pérez O, MacÍas-Ornelas A, Capilla-González V, Quiñones-Hinojosa A. Ethical implications in the use of embryonic and adult neural stem cells. Stem Cells Int. 2012;2012:470949. https://doi.org/10.1155/2012/470949.

    Article  Google Scholar 

  66. Gurusamy N, Alsayari A, Rajasingh S, Rajasingh J. Adult stem cells for regenerative therapy. Prog Mol Biol Transl Sci. 2018;160:1–22. https://doi.org/10.1016/bs.pmbts.2018.07.009.

    Article  CAS  Google Scholar 

  67. Andrzejewska A, Dabrowska S, Lukomska B, Janowski M. Mesenchymal stem cells for neurological disorders. Adv Sci. 2021;8:2002944. https://doi.org/10.1002/advs.202002944.

    Article  CAS  Google Scholar 

  68. Yang X, Meng Y, Han Z, Ye F, Wei L, Zong C. Mesenchymal stem cell therapy for liver disease: full of chances and challenges. Cell Biosci. 2020;10:123. https://doi.org/10.1186/s13578-020-00480-6.

    Article  Google Scholar 

  69. Goldring SR, Goldring MB. Bone and cartilage in osteoarthritis: is what’s best for one good or bad for the other? Arthritis Res Ther. 2010;12:143. https://doi.org/10.1186/ar3135.

    Article  Google Scholar 

  70. Shah S, Otsuka T, Bhattacharjee M, Laurencin CT. Minimally invasive cellular therapies for osteoarthritis treatment. Regen Eng Transl Med. 2021;7:76–90. https://doi.org/10.1007/s40883-020-00184-w.

    Article  Google Scholar 

  71. Al Faqeh H, Nor Hamdan BMY, Chen HC, Aminuddin BS, Ruszymah BHI. The potential of intra-articular injection of chondrogenic-induced bone marrow stem cells to retard the progression of osteoarthritis in a sheep model. Exp Gerontol. 2012;47:458–64. https://doi.org/10.1016/j.exger.2012.03.018.

    Article  Google Scholar 

  72. Diekman BO, Wu CL, Louer CR, Furman BD, Huebner JL, Kraus VB, et al. Intra-articular delivery of purified mesenchymal stem cells from C57Bl/6 or MRL/MpJ superhealer mice prevents posttraumatic arthritis. Cell Transplant. 2013;22:1395–408. https://doi.org/10.3727/096368912X653264.

    Article  Google Scholar 

  73. Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32:1254–66. https://doi.org/10.1002/stem.1634.

    Article  CAS  Google Scholar 

  74. Pers Y-M, Rackwitz L, Ferreira R, Pullig O, Delfour C, Barry F, et al. Adipose mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: a phase I dose-escalation trial. Stem Cells Transl Med. 2016;5:847–56. https://doi.org/10.5966/sctm.2015-0245.

    Article  Google Scholar 

  75. Lu L, Dai C, Zhang Z, Du H, Li S, Ye P, et al. Treatment of knee osteoarthritis with intra-articular injection of autologous adipose-derived mesenchymal progenitor cells: a prospective, randomized, double-blind, active-controlled, phase IIb clinical trial. Stem Cell Res Ther. 2019;10:143. https://doi.org/10.1186/s13287-019-1248-3.

    Article  CAS  Google Scholar 

  76. Chahal J, Gómez-Aristizábal A, Shestopaloff K, Bhatt S, Chaboureau A, Fazio A, et al. Bone marrow mesenchymal stromal cell treatment in patients with osteoarthritis results in overall improvement in pain and symptoms and reduces synovial inflammation. Stem Cells Transl Med. 2019;8:746–57. https://doi.org/10.1002/sctm.18-0183.

    Article  CAS  Google Scholar 

  77. Lamo-Espinosa JM, Mora G, Blanco JF, Granero-Moltó F, Nuñez-Córdoba JM, Sánchez-Echenique C, et al. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: Multicenter randomized controlled clinical trial (phase I/II). J Transl Med. 2016;14:246. https://doi.org/10.1186/s12967-016-0998-2.

    Article  CAS  Google Scholar 

  78. Garay-Mendoza D, Villarreal-Martínez L, Garza-Bedolla A, Pérez-Garza DM, Acosta-Olivo C, Vilchez-Cavazos F, et al. The effect of intra-articular injection of autologous bone marrow stem cells on pain and knee function in patients with osteoarthritis. Int J Rheum Dis. 2018;21:140–7. https://doi.org/10.1111/1756-185X.13139.

    Article  CAS  Google Scholar 

  79. Vangsness CT, Farr J, Boyd J, Dellaero DT, Mills CR, LeRoux-Williams M. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy a randomized, double-blind, controlled study. J Bone Jt Surg. 2014;96:90–8. https://doi.org/10.2106/JBJS.M.00058.

    Article  Google Scholar 

  80. Orozco L, Munar A, Soler R, Alberca M, Soler F, Huguet M, et al. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation. 2013;95:1535–41. https://doi.org/10.1097/TP.0b013e318291a2da.

    Article  CAS  Google Scholar 

  81. Lee WS, Kim HJ, Il Kim K, Kim GB, ** W. Intra-articular injection of autologous adipose tissue-derived mesenchymal stem cells for the treatment of knee osteoarthritis: a phase IIb, randomized, placebo-controlled clinical trial. Stem Cells Transl Med. 2019;8:504–11. https://doi.org/10.1002/sctm.18-0122.

    Article  CAS  Google Scholar 

  82. Koh YG, Kwon OR, Kim YS, Choi YJ, Tak DH. Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial. Arthrosc - J Arthrosc Relat Surg. 2016;32:97–109. https://doi.org/10.1016/j.arthro.2015.09.010.

    Article  Google Scholar 

  83. Consensus development conference. Diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med. 1993;94:646–50. https://doi.org/10.1016/0002-9343(93)90218-e.

    Article  Google Scholar 

  84. Kiernan J, Hu S, Grynpas MD, Davies JE, Stanford WL. Systemic mesenchymal stromal cell transplantation prevents functional bone loss in a mouse model of age-related osteoporosis. Stem Cells Transl Med. 2016;5:683–93. https://doi.org/10.5966/sctm.2015-0231.

    Article  Google Scholar 

  85. Uri O, Behrbalk E, Folman Y. Local implantation of autologous adipose-derived stem cells increases femoral strength and bone density in osteoporotic rats: a randomized controlled animal study. J Orthop Surg. 2018;26:230949901879953. https://doi.org/10.1177/2309499018799534.

    Article  Google Scholar 

  86. Suzuki K, Sun R, Origuch M, Kanehira M, Takahata T, Itoh J, et al. Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med. 2011;17:579–87. https://doi.org/10.2119/molmed.2010.00157.

    Article  CAS  Google Scholar 

  87. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature. 2007;449:557–63. https://doi.org/10.1038/nature06188.

    Article  CAS  Google Scholar 

  88. Shinagawa K, Kitadai Y, Tanaka M, Sumida T, Kodama M, Higashi Y, et al. Mesenchymal stem cells enhance growth and metastasis of colon cancer. Int J Cancer. 2010;127:2323–33. https://doi.org/10.1002/ijc.25440.

    Article  CAS  Google Scholar 

  89. Mathew E, Brannon AL, Del Vecchio AC, Garcia PE, Penny MK, Kane KT, et al. Mesenchymal stem cells promote pancreatic tumor growth by inducing alternative polarization of macrophages. Neoplasia (United States). 2016;18:142–51. https://doi.org/10.1016/j.neo.2016.01.005.

    Article  CAS  Google Scholar 

  90. De Boeck A, Pauwels P, Hensen K, Rummens JL, Westbroek W, Hendrix A, et al. Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/HER3 signalling. Gut. 2013;62:550–60. https://doi.org/10.1136/gutjnl-2011-301393.

    Article  CAS  Google Scholar 

  91. Barkholt L, Flory E, Jekerle V, Lucas-Samuel S, Ahnert P, Bisset L, et al. Risk of tumorigenicity in mesenchymal stromal cell-based therapies - bridging scientific observations and regulatory viewpoints. Cytotherapy. 2013;15:753–9. https://doi.org/10.1016/j.jcyt.2013.03.005.

    Article  Google Scholar 

  92. Furlani D, Ugurlucan M, Ong LL, Bieback K, Pittermann E, Westien I, et al. Is the intravascular administration of mesenchymal stem cells safe?. Mesenchymal stem cells and intravital microscopy. Microvasc Res. 2009;77:370–6. https://doi.org/10.1016/j.mvr.2009.02.001.

    Article  CAS  Google Scholar 

  93. Mäkelä T, Takalo R, Arvola O, Haapanen H, Yannopoulos F, Blanco R, et al. Safety and biodistribution study of bone marrow-derived mesenchymal stromal cells and mononuclear cells and the impact of the administration route in an intact porcine model. Cytotherapy. 2015;17:392–402. https://doi.org/10.1016/j.jcyt.2014.12.004.

    Article  CAS  Google Scholar 

  94. Castro-Viñuelas R, Sanjurjo-Rodríguez C, Piñeiro-Ramil M, Hermida-Gómez T, Fuentes-Boquete IM, de Toro-Santos FJ, et al. Induced pluripotent stem cells for cartilage repair: current status and future perspectives. Eur Cells Mater. 2018;36:96–109. https://doi.org/10.22203/eCM.v036a08.

    Article  Google Scholar 

  95. Uto S, Nishizawa S, Takasawa Y, Asawa Y, Fujihara Y, Takato T, et al. Bone and cartilage repair by transplantation of induced pluripotent stem cells in murine joint defect model. Biomed Res. 2013;34:281–8. https://doi.org/10.2220/biomedres.34.281.

    Article  CAS  Google Scholar 

  96. Zhu Y, Wu X, Liang Y, Gu H, Song K, Zou X, et al. Repair of cartilage defects in osteoarthritis rats with induced pluripotent stem cell derived chondrocytes. BMC Biotechnol. 2016;16:78. https://doi.org/10.1186/s12896-016-0306-5.

    Article  CAS  Google Scholar 

  97. Khan NM, Diaz-Hernandez ME, Chihab S, Priyadarshani P, Bhattaram P, Mortensen LJ, et al. Differential chondrogenic differentiation between iPSC derived from healthy and OA cartilage is associated with changes in epigenetic regulation and metabolic transcriptomic signatures. Elife. 2023;12. https://doi.org/10.7554/eLife.83138

  98. Komura S, Satake T, Goto A, Aoki H, Shibata H, Ito K, et al. Induced pluripotent stem cell-derived tenocyte-like cells promote the regeneration of injured tendons in mice. Sci Rep. 2020;10:3992. https://doi.org/10.1038/s41598-020-61063-6.

    Article  CAS  Google Scholar 

  99. Howell K, Chien C, Bell R, Laudier D, Tufa SF, Keene DR, et al. Novel model of tendon regeneration reveals distinct cell mechanisms underlying regenerative and fibrotic tendon healing. Sci Rep. 2017;7:45238. https://doi.org/10.1038/srep45238.

    Article  CAS  Google Scholar 

  100. Tsutsumi H, Kurimoto R, Nakamichi R, Chiba T, Matsushima T, Fujii Y, et al. Generation of a tendon-like tissue from human iPS cells. J Tissue Eng. 2022;13:204173142210740. https://doi.org/10.1177/20417314221074018.

    Article  CAS  Google Scholar 

  101. Mizuno Y, Chang H, Umeda K, Niwa A, Iwasa T, Awaya T, et al. Generation of skeletal muscle stem/progenitor cells from murine induced pluripotent stem cells. FASEB J. 2010;24:2245–53. https://doi.org/10.1096/fj.09-137174.

    Article  CAS  Google Scholar 

  102. Baci D, Chirivì M, Pace V, Maiullari F, Milan M, Rampin A, et al. Extracellular vesicles from skeletal muscle cells efficiently promote myogenesis in induced pluripotent stem cells. Cells. 2020;9:1527. https://doi.org/10.3390/cells9061527.

    Article  Google Scholar 

  103. Guan J, Wang G, Wang J, Zhang Z, Fu Y, Cheng L, et al. Chemical reprogramming of human somatic cells to pluripotent stem cells. Nature. 2022;605:325–31. https://doi.org/10.1038/s41586-022-04593-5.

    Article  CAS  Google Scholar 

  104. Staufer O, Dietrich F, Rimal R, Schröter M, Fabritz S, Boehm H, et al. Bottom-up assembly of biomedical relevant fully synthetic extracellular vesicles. Sci Adv. 2021;7:eabg6666. https://doi.org/10.1126/sciadv.abg6666.

    Article  CAS  Google Scholar 

  105. Luo L, Tang J, Nishi K, Yan C, Dinh PU, Cores J, et al. Fabrication of synthetic mesenchymal stem cells for the treatment of acute myocardial infarction in mice. Circ Res. 2017;120:1768–75. https://doi.org/10.1161/CIRCRESAHA.116.310374.

    Article  CAS  Google Scholar 

  106. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60:613–21. https://doi.org/10.1002/jbm.10167.

    Article  CAS  Google Scholar 

  107. Borden M, Attawia M, Khan Y, El-Amin SF, Laurencin CT. Tissue-engineered bone formation in vivo using a novel sintered polymeric microsphere matrix. J Bone Jt Surg - Ser B. 2004;86:1200–8. https://doi.org/10.1302/0301-620X.86B8.14267.

    Article  CAS  Google Scholar 

  108. Yu X, Botchwey EA, Levine EM, Pollack SR, Laurencin CT. Bioreactor-based bone tissue engineering: the influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization. Proc Natl Acad Sci U S A. 2004;101:11203–8. https://doi.org/10.1073/pnas.0402532101.

    Article  CAS  Google Scholar 

  109. Shemshaki NS, Kan HM, Barajaa M, Otsuka T, Lebaschi A, Mishra N, et al. Muscle degeneration in chronic massive rotator cuff tears of the shoulder: addressing the real problem using a graphene matrix. Proc Natl Acad Sci U S A. 2022;119:e2208106119. https://doi.org/10.1073/pnas.2208106119. National Academy of Sciences.

    Article  CAS  Google Scholar 

  110. Cooper JA, Sahota JS, Gorum WJ, Carter J, Doty SB, Laurencin CT. Biomimetic tissue-engineered anterior cruciate ligament replacement. Proc Natl Acad Sci U S A. 2007;104:3049–54. https://doi.org/10.1073/pnas.0608837104.

    Article  CAS  Google Scholar 

  111. Mengsteab PY, Otsuka T, McClinton A, Shemshaki NS, Shah S, Kan HM, et al. Mechanically superior matrices promote osteointegration and regeneration of anterior cruciate ligament tissue in rabbits. Proc Natl Acad Sci U S A. 2020;117:28655–66. https://doi.org/10.1073/pnas.2012347117.

    Article  CAS  Google Scholar 

  112. Laurencin CT, Khan Y. Regenerative engineering. Sci Transl Med. 2012;4:160ed9. https://doi.org/10.1126/scitranslmed.3004467.

    Article  Google Scholar 

  113. Ogueri KS, Escobar Ivirico JL, Li Z, Blumenfield RH, Allcock HR, Laurencin CT. Synthesis, physicochemical analysis, and side group optimization of degradable dipeptide-based polyphosphazenes as potential regenerative biomaterials. ACS Appl Polym Mater. 2019;1:1568–78. https://doi.org/10.1021/acsapm.9b00333.

    Article  CAS  Google Scholar 

  114. Otsuka T, Kan HM, Laurencin CT. Regenerative engineering approaches to scar-free skin regeneration. Regen Eng Transl Med. 2022;8:225–47. https://doi.org/10.1007/s40883-021-00229-8.

    Article  CAS  Google Scholar 

  115. Ogueri KS, Ogueri KS, Allcock HR, Laurencin CT. Polyphosphazene polymers: the next generation of biomaterials for regenerative engineering and therapeutic drug delivery. J Vac Sci Technol B. 2020;38:030801. https://doi.org/10.1116/6.0000055.

    Article  CAS  Google Scholar 

  116. Esdaille CJ, Washington KS, Laurencin CT. Regenerative engineering: a review of recent advances and future directions. Regen Med. 2021;16:495–512. https://doi.org/10.2217/rme-2021-0016.

    Article  CAS  Google Scholar 

  117. Goldenberg D, McLaughlin C, Koduru SV, Ravnic DJ. Regenerative engineering: current applications and future perspectives. Front Surg. 2021;8:731031. https://doi.org/10.3389/fsurg.2021.731031.

    Article  Google Scholar 

  118. Cushnie EK, Ulery BD, Nelson SJ, Deng M, Sethuraman S, Doty SB, et al. Simple signaling molecules for inductive bone regenerative engineering. Chin W-C, editor. PLoS One. 2014;9:e101627. https://doi.org/10.1371/journal.pone.0101627

  119. Arnold AM, Holt BD, Daneshmandi L, Laurencin CT, Sydlik SA. Phosphate graphene as an intrinsically osteoinductive scaffold for stem cell-driven bone regeneration. Proc Natl Acad Sci U S A. 2019;116:4855–60. https://doi.org/10.1073/pnas.1815434116.

    Article  CAS  Google Scholar 

  120. Shah S, Esdaille CJ, Bhattacharjee M, Kan HM, Laurencin CT. The synthetic artificial stem cell (SASC): shifting the paradigm of cell therapy in regenerative engineering. Proc Natl Acad Sci U S A. 2022;119:e2116865118. https://doi.org/10.1073/pnas.2116865118.

    Article  CAS  Google Scholar 

  121. Bhattacharjee M, Escobar Ivirico JL, Kan H-M, Shah S, Otsuka T, Bordett R, et al. Injectable amnion hydrogel-mediated delivery of adipose-derived stem cells for osteoarthritis treatment. Proc Natl Acad Sci U S A. 2022;119:e2120968119. https://doi.org/10.1073/pnas.2120968119.

    Article  CAS  Google Scholar 

  122. Bhattacharjee M, Ivirico JLE, Kan HM, Bordett R, Pandey R, Otsuka T, et al. Preparation and characterization of amnion hydrogel and its synergistic effect with adipose derived stem cells towards IL1β activated chondrocytes. Sci Rep. 2020;10:18751. https://doi.org/10.1038/s41598-020-75921-w.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support from NIH/NIAMS T32 AR079114 (to CTL), NSF EFRI-Bioflex 1332329 (to CTL), Building Infrastructure Leading to Diversity (BUILD) TL4GM118971 (to CTL), and Raymond and Beverly Sackler Center for Biomedical, Biological, Physical, and Engineering Sciences is gratefully acknowledged. Original images were created using Biorender.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was conceptualized and written through the contributions of all authors. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Cato T. Laurencin.

Ethics declarations

Competing Interests

University of Connecticut has filed a patent application on behalf of the inventors (S.S., C.T.L) entitled The Synthetic Artificial Stem Cell. C.T.L. has the following competing financial interests: Mimedx, Alkermes Company, Biobind, Soft tissue regeneration/Biorez, and Healing Orthopedic Technologies-Bone.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S., Ghosh, D., Otsuka, T. et al. Classes of Stem Cells: From Biology to Engineering. Regen. Eng. Transl. Med. (2023). https://doi.org/10.1007/s40883-023-00317-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40883-023-00317-x

Keywords

Navigation