Log in

The Kapustin–Witten equations and nonabelian Hodge theory

  • Research Article
  • Published:
European Journal of Mathematics Aims and scope Submit manuscript

Abstract

Arising from a topological twist of \({\mathscr {N}}=4\) super Yang–Mills theory are the Kapustin–Witten equations, a family of gauge-theoretic equations on a four-manifold parametrised by \(t\in {\mathbb {P}}^1\). The parameter corresponds to a linear combination of two super charges in the twist. When \(t=0\) and the four-manifold is a compact Kähler surface, the equations become the Simpson equations, which was originally studied by Hitchin on a compact Riemann surface, as demonstrated independently in works of Nakajima and the third-named author. At the same time, there is a notion of \(\lambda \)-connection in the nonabelian Hodge theory of Donaldson–Corlette–Hitchin–Simpson in which \(\lambda \) is also valued in \({\mathbb {P}}^1\). Varying \(\lambda \) interpolates between the moduli space of semistable Higgs sheaves with vanishing Chern classes on a smooth projective variety (at \(\lambda =0\)) and the moduli space of semisimple local systems on the same variety (at \(\lambda =1\)) in the twistor space. In this article, we utilise the correspondence furnished by nonabelian Hodge theory to describe a relation between the moduli spaces of solutions to the equations by Kapustin and Witten at \(t=0\) and \(t \in {{\mathbb {R}}} \,{\setminus }\, \{ 0 \}\) on a smooth, compact Kähler surface. We then provide supporting evidence for a more general form of this relation on a smooth, closed four-manifold by computing its expected dimension of the moduli space for each of \(t=0\) and \(t \in {{\mathbb {R}}} \,{\setminus }\, \{ 0 \}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M.F., Hitchin, N.J., Singer, I.M.: Self-duality in four-dimensional Riemannian geometry. Proc. Roy. Soc. London Ser. A 362(1711), 425–461 (1978)

    Article  MathSciNet  Google Scholar 

  2. Baraglia, D., Schaposnik, L.P.: Higgs bundles and \((A, B, A)\)-branes. Comm. Math. Phys. 331(3), 1271–1300 (2014). ar**v:1305.4638

    Article  MathSciNet  Google Scholar 

  3. Baraglia, D., Schaposnik, L.P.: Real structures on moduli spaces of Higgs bundles. Adv. Theor. Math. Phys. 20(3), 525–551 (2016). ar**v:1309.1195

    Article  MathSciNet  Google Scholar 

  4. Biquard, O., Boalch, P.: Wild non-abelian Hodge theory on curves. Compositio Math. 140(1), 179–204 (2004). ar**v:math/0111098

    Article  MathSciNet  Google Scholar 

  5. Biswas, I., García-Prada, O., Hurtubise, J.: Higgs bundles, branes and Langlands duality. Comm. Math. Phys. 365(3), 1005–1018 (2019). ar**v:1707.00392

  6. Bourguignon, J.-P., Lawson, H.B., Jr.: Stability and isolation phenomena for Yang–Mills fields. Comm. Math. Phys. 79(2), 189–230 (1981)

    Article  MathSciNet  Google Scholar 

  7. Bradlow, S.B.: Vortices in holomorphic line bundles over closed Kähler manifolds. Comm. Math. Phys. 135(1), 1–17 (1990)

    Article  MathSciNet  Google Scholar 

  8. de Cataldo, M.A.A., Hausel, T., Migliorini, L.: Topology of Hitchin systems and Hodge theory of character varieties: the case \(A_1\). Ann. Math. 175(3), 1329–1407 (2012). ar**v:1004.1420

    Article  MathSciNet  Google Scholar 

  9. Chen, T.H., Ngô, B.C.: On the Hitchin morphism for higher-dimensional varieties. Duke Math. J. 169(10), 1971–2004 (2020). ar**v:1905.04741

  10. Corlette, K.: Flat \(G\)-bundles with canonical metrics. J. Differential Geom. 28(3), 361–382 (1988)

    Article  MathSciNet  Google Scholar 

  11. Donagi, R., Pantev, T.: Langlands duality for Hitchin systems. Invent. Math. 189(3), 653–735 (2012). ar**v:math/0604617

    Article  MathSciNet  Google Scholar 

  12. Donaldson, S.K.: Twisted harmonic maps and the self-duality equations. Proc. London Math. Soc. 55(1), 127–131 (1987)

    Article  MathSciNet  Google Scholar 

  13. Donaldson, S.K., Kronheimer, P.B.: The Geometry of Four-Manifolds. Oxford Mathematical Monographs. Oxford University Press, New York (1990)

    MATH  Google Scholar 

  14. Dumitrescu, O., Fredrickson, L., Kydonakis, G., Mazzeo, R., Mulase, M., Neitzke, A.: Opers versus nonabelian Hodge (2016). ar**s of Riemannian manifolds. Amer. J. Math. 86(1), 109–160 (1964)

    Article  MathSciNet  Google Scholar 

  15. Elliott, C., Pestun, V.: Multiplicative Hitchin systems and supersymmetric gauge theory. Selecta Math. (N.S.) 25(4), Art. No. 64 (2019). ar**v:1812.05516

  16. Franc, C., Rayan, S.: Nonabelian Hodge theory and vector valued modular forms. In: Krauel, M., et al. (eds.) Vertex Operator Algebras, Number Theory and Related Topics. Contemporary Mathematics, vol. 753, pp. 95–118. American Mathematical Society, Providence (2020). ar**v:1812.06180

  17. Franco, E., Gothen, P.B., Oliveira, A., Peón-Nieto, A.: Unramified covers and branes on the Hitchin system. Adv. Math. 377, Art. No. 107493 (2021). ar**v:1802.05237

  18. Franco, E., Jardim, M., Marchesi, S.: Branes in the moduli space of framed sheaves. Bull. Sci. Math. 141(4), 353–383 (2017). ar**v:1504.05883

  19. Gagliardo, M., Uhlenbeck, K.: Geometric aspects of the Kapustin–Witten equations. J. Fixed Point Theory Appl. 11(2), 185–198 (2012). ar**v:1401.7366

    Article  MathSciNet  Google Scholar 

  20. Gaiotto, D., Witten, E.: Knot invariants from four-dimensional gauge theory. Adv. Theor. Math. Phys. 16(3), 935–1086 (2012). ar**v:1106.4789

    Article  MathSciNet  Google Scholar 

  21. García-Raboso, A., Rayan, S.: Introduction to Nonabelian Hodge Theory. In: Laza, R., et al. (eds.) Calabi–Yau Varieties: Arithmetic, Geometry and Physics. Fields Institute Monographs, vol. 34, pp. 131–171. Springer, New York (2015). ar**v:1406.1693

  22. Gukov, S., Witten, E.: Gauge theory, ramification, and the geometric Langlands program. In: Jenison, D., et al. (eds.) Current Developments in Mathematics, pp. 35–180. Int. Press, Somerville (2008). ar**v:hep-th/0612073

  23. Hausel, T., Thaddeus, M.: Mirror symmetry, Langlands duality, and the Hitchin system. Invent. Math. 153(1), 197–229 (2003). ar**v:math/0205236

    Article  MathSciNet  Google Scholar 

  24. Hitchin, N.J.: The self-duality equations on a Riemann surface. Proc. London Math. Soc. 55(1), 59–126 (1987)

    Article  MathSciNet  Google Scholar 

  25. Hitchin, N.: Stable bundles and integrable systems. Duke Math. J. 54(1), 91–114 (1987)

    Article  MathSciNet  Google Scholar 

  26. Huang, P.: Non-Abelian Hodge theory and related topics. SIGMA Symmetry Integrability Geom. Methods Appl. 16, Art. No. 029 (2020). ar**v:1908.08348

  27. Jost, J., Yau, S.-T.: Harmonic maps and group representations. In: Lawson, B., Tenenblat, K. (eds.) Differential Geometry. Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 52, pp. 241–259. Longman Scientific & Technical, Harlow (1991)

    Google Scholar 

  28. Joyce, D.: An introduction to d-manifolds and derived differential geometry. In: Brambila-Paz, L., et al. (eds.) Moduli Spaces. London Mathematical Society Lecture Note Series, vol. 411, pp. 230–281. Cambridge University Press, Cambridge (2014). ar**v:1206.4207

  29. Joyce, D.: D-manifolds and d-orbifolds: a theory of derived differential geometry. Preliminary version (2012) available at https://people.maths.ox.ac.uk/~joyce/dmanifolds.html

  30. Joyce, D., Tanaka, Y., Upmeier, M.: On orientations for gauge-theoretic moduli spaces. Adv. Math. 362, Art. No. 106957 (2020). ar**v:1811.01096

  31. Kapustin, A., Witten, E.: Electric-magnetic duality and the geometric Langlands program. Commun. Number Theory Phys. 1(1), 1–236 (2007). hep-th/0604151

    Article  MathSciNet  Google Scholar 

  32. Kobayashi, S.: Differential geometry of complex vector bundles. Publications of the Mathematical Society of Japan, vol. 15. Kanô Memorial Lectures, vol. 5. Princeton University Press, Princeton (1987)

  33. Labourie, F.: Existence d’applications harmoniques tordues à valeurs dans les variétés à courbure négative. Proc. Amer. Math. Soc. 111(3), 877–882 (1991)

    MathSciNet  MATH  Google Scholar 

  34. Mazzeo, R., Witten, E.: The Nahm pole boundary condition. In: Katzarkov, L., et al. (eds.) The Influence of Solomon Lefschetz in Geometry and Topology. Contemporary Mathematics, vol. 621, pp. 171–226. American Mathematical Society, Providence (2014). ar**v:1311.3167

  35. Mochizuki, T.: Kobayashi–Hitchin correspondence for tame harmonic bundles and an application. Astérisque 309 (2006). ar**v:math/0411300

  36. Mochizuki, T.: Kobayashi-Hitchin correspondence for tame harmonic bundles. II. Geom. Topol. 13(1), 359–455 (2009). ar**v:math/0602266

    Article  MathSciNet  Google Scholar 

  37. Mochizuki, T.: Wild harmonic bundles and wild pure twistor \(D\)-modules. Astérisque 340 (2011). ar**v:0803.1344

  38. Nakajima, H.: Towards a mathematical definition of Coulomb branches of 3-dimensional \({\mathscr {N}}=4\) gauge theories, I. Adv. Theor. Math. Phys. 20(3), 595–669 (2016). ar**v:1503.03676

  39. Pantev, T., Toën, B., Vaquié, M., Vezzosi, G.: Shifted symplectic structures. Publ. Math. Inst. Hautes Études Sci. 117, 271–328 (2013). ar**v:1111.3209

    Article  MathSciNet  Google Scholar 

  40. Rayan, S., Schaposnik, L.P.: Moduli spaces of generalized hyperpolygons (2020). ar**v:2001.06911

  41. Shanahan, P.: The Atiyah-Singer index theorem. Lecture Notes in Mathematics, vol. 638. Springer, Berlin (1978)

  42. Simpson, C.T.: Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization. J. Amer. Math. Soc. 1(4), 867–918 (1988)

    Article  MathSciNet  Google Scholar 

  43. Simpson, C.T.: Nonabelian Hodge theory. In: Satake, I. (ed.) Proceedings of the International Congress of Mathematicians, Vol. I (Kyoto, 1990), 747–756. Mathematical Society of Japan, Tokyo (1991)

  44. Simpson, C.T.: Harmonic bundles on noncompact curves. J. Amer. Math. Soc. 3(3), 713–770 (1990)

    Article  MathSciNet  Google Scholar 

  45. Simpson, C.T.: Higgs bundles and local systems. Inst. Hautes Études Sci. Publ. Math. 75, 5–95 (1992)

    Article  MathSciNet  Google Scholar 

  46. Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety I. Inst. Hautes Études Sci. Publ. Math. 79, 47–129 (1994)

    Article  MathSciNet  Google Scholar 

  47. Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety II. Inst. Hautes Études Sci. Publ. Math. 80, 5–79 (1994)

    Article  MathSciNet  Google Scholar 

  48. Simpson, C.: The Hodge filtration on nonabelian cohomology. In: Kollár, J., et al. (eds.) Algebraic Geometry—Santa Cruz 1995. Proceedings of Symposia in Pure Mathematics, vol. 62, pp. 217–281. American Mathematical Society, Providence (1997). alg-geom/9604005

  49. Tanaka, Y.: On the singular sets of solutions to the Kapustin–Witten equations and the Vafa–Witten ones on compact Kähler surfaces. Geom. Dedicata 199, 177–187 (2019). ar**v:1510.07739

  50. Taubes, C.H.: \({\rm PSL}(2;{{\mathbb{C}}})\) connections on 3-manifolds with \(L^2\) bounds on curvature. Camb. J. Math. 1(2), 239–397 (2013). ar**v:1205.0514

    Article  MathSciNet  Google Scholar 

  51. Taubes, C.H.: Compactness theorems for \({\rm SL}(2;{\mathbb{C}})\) generalizations of the 4-dimensional anti-self-dual equations (2013). ar**v:1307.6447

  52. Uhlenbeck, K., Yau, S.-T.: On the existence of Hermitian-Yang–Mills connections in stable vector bundles. Comm. Pure Appl. Math. 39, no. S, suppl., S257–S293 (1986)

  53. Ward, R.S.: Integrable \((2k)\)-dimensional Hitchin equations. Lett. Math. Phys. 106(7), 951–958 (2016). ar**v:1604.07247

  54. Witten, E.: Fivebranes and knots. Quantum Topol. 3(1), 1–137 (2012). ar**v:1101.3216

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors thank Christopher Beem, Laura Fredrickson, Sergei Gukov, Hiroshi Iritani, Rafe Mazzeo, Takuro Mochizuki, Ákos Nagy, Hiraku Nakajima, and Sakura Schäfer-Nameki for helpful conversations. S. R. is grateful to Andrew Dancer and Frances Kirwan for their hospitality and enlightening discussions during a November 2018 visit to the Oxford Mathematical Institute, where the second- and third-named authors initiated this project. Y. T. is grateful to Hiraku Nakajima for the support and hospitality at Kavli IPMU in Autumn 2020. S. R. and Y. T. thank the Mathematisches Forschungsinstitut Oberwolfach (MFO) and the organizers of the May 2019 Workshop on Geometry and Physics of Higgs Bundles (Lara Anderson, Tamás Hausel, Rafe Mazzeo, and Laura Schaposnik) for a stimulating environment in which some formative ideas related to this project were discussed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuuji Tanaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

C.-C. L. was partially supported by Ministry of Science and Technology of Taiwan under grant number 109-2115-M-006-011. S. R. was partially supported by an NSERC Discovery Grant. Y. T. was partially supported by the Simons Collaboration on Special Holonomy in Geometry, Analysis and Physics and JSPS Grant-in-Aid for Scientific Research number JP16K05125 during the preparation of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, CC., Rayan, S. & Tanaka, Y. The Kapustin–Witten equations and nonabelian Hodge theory. European Journal of Mathematics 8 (Suppl 1), 23–41 (2022). https://doi.org/10.1007/s40879-022-00538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40879-022-00538-4

Keywords

Mathematics Subject Classification

Navigation