Log in

High Strain-Rate Characterisation of Vanadium

  • Research Paper
  • Published:
Journal of Dynamic Behavior of Materials Aims and scope Submit manuscript

Abstract

The mechanical response of the body centred cubic metal vanadium has been studied across a wide range of strain-rates through uniaxial stress compression. Samples of polycrystalline material have been tested up to strain-rates of 105 s−1 using miniature split and direct impact Hopkinson bars. The strain-rate sensitivity of the yield strength is shown to be significant with an apparent increase around 102–103 s−1 and another increase ~ 105 s−1. This later increase is discussed as being consistent with uniaxial strain experiments and shown to compare favourably with a Preston-Tonks-Wallace model modified to fit data out to strain-rates of ~ 107 s−1. The benefits of the miniatured direct impact Hopkinson bar experiment are discussed along with the importance of velocimetry diagnostics and the requirement to understand and correct for friction at these high rates. Multiple repeat experiments and comparison of data taken with different loading platforms and different sample sizes are shown to produce a consistent and reliable data set which is complementary to existing sparse data on vanadium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gray GT III (2000) Mechanical Testing and Evaluation. ASM International, Detroit, pp 462–476

    Google Scholar 

  2. Davison L, Graham RA (1979) Shock compression of solids. Phys Rep 55(4):255–379. https://doi.org/10.1016/0370-1573(79)90026-7

    Article  CAS  Google Scholar 

  3. Gorham DA et al (1992) An improved method for compressive stress-strain measurements at very high strain rates. Proc R Soc Lon Ser-A 438(1902):153–170. https://doi.org/10.1098/rspa.1992.0099

    Article  Google Scholar 

  4. Lea L, Jardine A (2018) Measuring structural evolution in the dynamic plasticity of FCC metals. AIP Conf Proc. https://doi.org/10.1063/1.5044829

    Article  Google Scholar 

  5. Malinowski JZ et al (2007) Miniaturized Compression Test at very high strain rates by direct impact. Exp Mech 47(4):451–463. https://doi.org/10.1007/s11340-006-9007-7

    Article  Google Scholar 

  6. Kamler F et al (1995) Measurement of the behaviour of high-purity copper at very high rates of strain. Can J Phys 73(5–6):295–303. https://doi.org/10.1139/p95-041

    Article  CAS  Google Scholar 

  7. Jordan JL et al (2007) Compressive properties of extruded polytetrafluoroethylene. Polymer 48(14):4184–4195. https://doi.org/10.1016/j.polymer.2007.05.038

    Article  CAS  Google Scholar 

  8. Casem DT et al (2012) Normal and transverse displacement Interferometers Applied to Small Diameter Kolsky Bars. Exp Mech 52(2):173–184. https://doi.org/10.1007/s11340-011-9524-x

    Article  Google Scholar 

  9. Casem D (2022) Advances in experimental impact mechanics. Elsevier, Amsterdam, pp 149–189

    Book  Google Scholar 

  10. Jia D, Ramesh KT (2004) A rigorous assessment of the benefits of miniaturization in the Kolsky bar system. Exp Mech 44(5):445–454. https://doi.org/10.1007/BF02427955

    Article  Google Scholar 

  11. Couque H (2014) The use of the direct impact Hopkinson pressure bar technique to describe thermally activated and viscous regimes of metallic materials. Philos Trans Royal Soc A Math Phys Eng Sci. https://doi.org/10.1098/rsta.2013.0218

    Article  Google Scholar 

  12. Dharan CKH, Hauser FE (1970) Determination of stress-strain characteristics at very high strain rates. Exp Mech 10(9):370–376. https://doi.org/10.1007/BF02320419

    Article  Google Scholar 

  13. Gorham DA (1979) Proceedings of the third conference on the mechanical properties at high rates of strain, (unpublished)

  14. Govender RA, Curry RJ (2016) The “Open” Hopkinson pressure bar: towards addressing force equilibrium in specimens with non-uniform deformation. J Dynamic Behavior Mater 2(1):43–49. https://doi.org/10.1007/s40870-015-0042-2

    Article  Google Scholar 

  15. Klepaczko J (2002) Advanced Experimental Techniques in materials testing. New Experimental Methods in Material Dynamics and Impact. Polish Academy of Sciences, Warsaw, p 223

    Google Scholar 

  16. Safford NA (1992) Proceedings of the 2nd international symposium on intense dynamic loading and its effects, (unpublished)

  17. Wulf GL (1978) The high strain rate compression of 7039 aluminium. Int J Mech Sci 20(9):609–615. https://doi.org/10.1016/0020-7403(78)90019-X

    Article  Google Scholar 

  18. Lea LJ, Jardine AP (2016) Application of photon doppler velocimetry to direct impact Hopkinson pressure bars. Rev Sci Instrum 87(2):023101. https://doi.org/10.1063/1.4940935

    Article  CAS  Google Scholar 

  19. Lea LJ (2017) Structural evolution in the dynamic plasticity of FCC metals. University of Cambridge, Cambridge

    Google Scholar 

  20. Lea LJ et al (2020) Time limited self-organised criticality in the high rate deformation of face centred cubic metals. Commun Mater 1(1):93. https://doi.org/10.1038/s43246-020-00090-2

    Article  Google Scholar 

  21. Strand OT (2006) Compact system for high-speed velocimetry using heterodyne techniques. Rev Sci Instrum 77:083018. https://doi.org/10.1063/1.2336749

    Article  CAS  Google Scholar 

  22. Lea LJ, Jardine AP (2015) Two-wave photon Doppler velocimetry measurements in direct impact Hopkinson pressure bar experiments. EPJ Web of Conferences 94. https://doi.org/10.1051/epjconf/20159401063

  23. Lindley TG, Smallman RE (1963) The plastic deformation of polycrystalline vanadium at low temperatures. Acta Metall 11(5):361–371. https://doi.org/10.1016/0001-6160(63)90161-5

    Article  CAS  Google Scholar 

  24. Edington JW, Smallman RE (1964) The relationship between flow stress and dislocation density in deformed vanadium. Acta Metall 12(12):1313–1328. https://doi.org/10.1016/0001-6160(64)90120-8

    Article  CAS  Google Scholar 

  25. Edington JW et al (1964) Strain-ageing of vanadium. Acta Metall 12(9):1025–1031. https://doi.org/10.1016/0001-6160(64)90074-4

    Article  CAS  Google Scholar 

  26. Edington JW, Smallman RE (1965) On mechanical twinning in single crystals of vanadium. Acta Metall 13(7):765–770. https://doi.org/10.1016/0001-6160(65)90140-9

    Article  CAS  Google Scholar 

  27. Mitchell TE et al (1970) Three-stage hardening in vanadium single crystals. J Less-Common Met 20(2):167–170. https://doi.org/10.1016/0022-5088(70)90104-9

    Article  CAS  Google Scholar 

  28. Bressers J et al (1970) Deformation properties of vanadium single crystals. J Less-Common Met 22(3):321–326. https://doi.org/10.1016/0022-5088(70)90082-2

    Article  CAS  Google Scholar 

  29. Taylor G et al (1973) Anomalous slip in high-purity vanadium crystals. Philos Mag 28(5):1035–1042. https://doi.org/10.1080/14786437308220966

    Article  CAS  Google Scholar 

  30. Creten R et al (1977) Anomalous slip in high-purity vanadium crystals deformed in compression. Mater Sci Eng 29(1):51–53. https://doi.org/10.1016/0025-5416(77)90145-8

    Article  CAS  Google Scholar 

  31. Bressers J, Creten R (1977) Suppression of anomalous slip by oxygen interstitials in vanadium. Scripta Metall Mater 11(1):33–36. https://doi.org/10.1016/0036-9748(77)90008-4

    Article  CAS  Google Scholar 

  32. Gröger R et al (2018) Deformation twinning in vanadium single crystals tested in compression at 77 K. Mater Sci Eng A 737:413–421. https://doi.org/10.1016/j.msea.2018.09.030

    Article  CAS  Google Scholar 

  33. Chhabildas LC, Hills CR (1986) Report No. SNL Report No. SAND-85-0322 C, 1985

  34. Florando JN et al (2009) High rate plasticity under pressure using a Windowed pressure-shear impact experiment. AIP Conf Proc 1195(1):723–726. https://doi.org/10.1063/1.3295242

    Article  CAS  Google Scholar 

  35. Zaretsky EB, Kanel GI (2014) Tantalum and vanadium response to shock-wave loading at normal and elevated temperatures. Non-monotonous decay of the elastic wave in vanadium. J Appl Phys 115(24):243502. https://doi.org/10.1063/1.4885047

    Article  CAS  Google Scholar 

  36. Chengda D et al (2001) Sound velocity variations and melting of vanadium under shock compression. J Phys D Appl Phys 34(20):3064. https://doi.org/10.1088/0022-3727/34/20/310

    Article  Google Scholar 

  37. Yaakobi B et al (2008) Extended x-ray absorption fine structure measurements of quasi-isentropically compressed vanadium targets on the OMEGA laser. Phys Plasmas 15(6):062703. https://doi.org/10.1063/1.2938749

    Article  CAS  Google Scholar 

  38. Park H-S et al (2010) Strong stabilization of the Rayleigh–Taylor instability by material strength at megabar pressures. Phys Plasmas 17(5):056314. https://doi.org/10.1063/1.3363170

    Article  CAS  Google Scholar 

  39. Jarmakani H et al (2010) Laser shock-induced spalling and fragmentation in vanadium. Acta Mater 58(14):4604–4628. https://doi.org/10.1016/j.actamat.2010.04.027

    Article  CAS  Google Scholar 

  40. Yu Y et al (2014) Phase transition and strength of vanadium under shock compression up to 88 GPa. Appl Phys Lett 105(20):201910. https://doi.org/10.1063/1.4902374

    Article  CAS  Google Scholar 

  41. Foster JM et al (2017) X-ray diffraction measurements of plasticity in shock-compressed vanadium in the region of 10–70 GPa. J Appl Phys 122(2):025117. https://doi.org/10.1063/1.4994167

    Article  CAS  Google Scholar 

  42. Kanel GI et al (2015) Stress relaxation in vanadium under shock and shockless dynamic compression. J Appl Phys 118(4):045901. https://doi.org/10.1063/1.4927613

    Article  CAS  Google Scholar 

  43. Hazan A et al (2021) Shock-induced twinning in polycrystalline vanadium: II. Surface layer. Mater Charact 175:111062. https://doi.org/10.1016/j.matchar.2021.111062

    Article  CAS  Google Scholar 

  44. Hazan A et al (2021) Shock-induced twinning in polycrystalline vanadium: I. twinning stress. Mater Charact 175:111061. https://doi.org/10.1016/j.matchar.2021.111061

    Article  CAS  Google Scholar 

  45. Zaretsky EB et al (2022) Impact response of pre-strained pure vanadium. J Appl Phys 131(21):215905. https://doi.org/10.1063/5.0092904

    Article  CAS  Google Scholar 

  46. Weck PF et al (2020) Shock compression of vanadium at extremes: theory and experiment. Phys Rev B 102(18):184109. https://doi.org/10.1103/PhysRevB.102.184109

    Article  CAS  Google Scholar 

  47. Wang H et al (2021) Evidence for mechanical softening-hardening dual anomaly in transition metals from shock-compressed vanadium. Phys Rev B 104(13):134102. https://doi.org/10.1103/PhysRevB.104.134102

    Article  CAS  Google Scholar 

  48. Sher A et al (2022) Shock wave determination of temperature dependence of twinning stress in vanadium and tantalum. Mater Sci Eng A 833:142537. https://doi.org/10.1016/j.msea.2021.142537

    Article  CAS  Google Scholar 

  49. Whiteman G et al (2022) Shock compression of condensed matter—2022

  50. Nemat-Nasser S, Guo W (2000) High strain-rate response of commercially pure vanadium. Mech Mater 32(4):243–260. https://doi.org/10.1016/S0167-6636(99)00056-3

    Article  Google Scholar 

  51. Lennon AM, Ramesh KT (1998) A technique for measuring the dynamic behavior of materials at high temperatures. Int J Plasticity 14(12):1279–1292. https://doi.org/10.1016/S0749-6419(98)00056-4

    Article  Google Scholar 

  52. Quinn RM et al (2020) Development and validation of a Hopkinson Bar for Hazardous materials. Exp Mech 60(9):1275–1288. https://doi.org/10.1007/s11340-020-00638-w

    Article  Google Scholar 

  53. Davies EDH, Hunter SC (1963) The dynamic compression testing of solids by the method of the split Hopkinson pressure bar. J Mech Phys Solids 11(3):155–179. https://doi.org/10.1016/0022-5096(63)90050-4

    Article  Google Scholar 

  54. Yang LM, Shim VPW (2005) An analysis of stress uniformity in split Hopkinson bar test specimens. Int J Impact Eng 31(2):129–150. https://doi.org/10.1016/j.ijimpeng.2003.09.002

    Article  Google Scholar 

  55. Armstrong RW (1961) On size effects in polycrystal plasticity. J Mech Phys Solids 9(3):196–199. https://doi.org/10.1016/0022-5096(61)90018-7

    Article  CAS  Google Scholar 

  56. Chen SR, Gray GT III (1996) Consititutive behavior of Tantalum and Tantalum-Tungsten Alloys. Metall Mater Trans A 27A:2994–3006. https://doi.org/10.1007/BF02663849

    Article  CAS  Google Scholar 

  57. Gray GT, Vecchio KS (1995) Influence of peak pressure and temperature on the structure/property response of shock- loaded Ta and Ta-10 W. Metall Mater Trans A 26(10):2555–2563. https://doi.org/10.1007/BF02669413

    Article  Google Scholar 

  58. Armstrong RW et al (2009) Dislocation mechanics of copper and iron in high rate deformation tests. J Appl Phys 105(2):023511. https://doi.org/10.1063/1.3067764

    Article  CAS  Google Scholar 

  59. Follansbee PS et al (1985) The mechanical threshold of dynamically deformed copper and nitronic 40. J Phys Colloques. https://doi.org/10.1051/jphyscol:1985504

    Article  Google Scholar 

  60. Kumar A, Kumble RG (1969) Viscous drag on dislocations at high strain rates in copper. J Appl Phys 40(9):3475–3480. https://doi.org/10.1063/1.1658222

    Article  CAS  Google Scholar 

  61. Rosenberg Z et al (2019) On the upturn phenomenon in the strength vs. strain-rate relations of metals. Int J Solids Struct 176–177:185–190. https://doi.org/10.1016/j.ijsolstr.2019.06.015

    Article  CAS  Google Scholar 

  62. Rosenberg Z (1993) On the relation between the Hugoniot elastic limit and the yield strength of brittle materials. J Appl Phys 74(1):752–753. https://doi.org/10.1063/1.355247

    Article  CAS  Google Scholar 

  63. Millett JCF et al (2013) The role of Cold Work on the shock response of Tantalum. J App Phys 113:233502

    Article  Google Scholar 

  64. Razorenov SV et al (2012) The spall strength and hugoniot elastic limit of tantalum with various grain size. AIP Conf Proc 1426(1):991–994. https://doi.org/10.1063/1.3686444

    Article  CAS  Google Scholar 

  65. Whiteman G et al (2019) Uniaxial compression of single crystal and polycrystalline tantalum. Mater Sci Eng A 759:70–77. https://doi.org/10.1016/j.msea.2019.05.006

    Article  CAS  Google Scholar 

  66. Whiteman G et al (2021) Compression characterisation of polycrystalline tantalum at strain-rates from 10– 3 to 104 s-1. Unpublished manuscript.

  67. Collinson MA et al (2022) Shock compression of condensed matter, Anaheim, (unpublished)

  68. Prime MB et al (2017) Estimation of metal strength at very high Rates using free-surface Richtmyer–Meshkov Instabilities. J Dynamic Behavior Mater 3(2):189–202. https://doi.org/10.1007/s40870-017-0103-9

    Article  Google Scholar 

  69. Prime MB et al (2022) A broad study of tantalum strength from ambient to extreme conditions. Acta Mater 231:117875. https://doi.org/10.1016/j.actamat.2022.117875

    Article  CAS  Google Scholar 

  70. Preston DL et al (2002) Model of plastic deformation for extreme loading conditions. J Appl Phys 93(1):211–220. https://doi.org/10.1063/1.1524706

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to graciously acknowledge LLNL for the provision of the vanadium material used in this research. YL Chiu from the University of Birmingham is thanked for the microhardness measurements. UK Ministry of Defence © Crown Owned Copyright 2022/AWE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Whiteman.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Whiteman, G., Lea, L.J., Quinn, R.M. et al. High Strain-Rate Characterisation of Vanadium. J. dynamic behavior mater. 9, 315–328 (2023). https://doi.org/10.1007/s40870-023-00387-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40870-023-00387-6

Keywords

Navigation