Log in

On a critical fourth order Leray–Lions \(p(\cdot )\)-Kirchhoff type problem with no-flux boundary condition

  • Original Article
  • Published:
São Paulo Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

Using variational methods combined with the genus theory, we investigate in this paper, the existence of nontrivial weak solutions for a class of fourth order critical \(p(\cdot )\)-Kirchhoff type problem involving the Leray–Lions type operators with indefinite weight and no flux boundary condition. Accurately, we show the existence of at least k pairs of nontrivial weak solutions for the given problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afrouzi, G.A., Mirzapour, M., Rădulescu, V.D.: Nonlocal fourth-order Kirchhoff systems with variable growth: low and high energy solutions. Collect. Math. 67(2), 207–223 (2016)

    Article  MathSciNet  Google Scholar 

  2. Antontsev, S.N., Shmarev, S.I.: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal. 60, 515–545 (2005)

    Article  MathSciNet  Google Scholar 

  3. Arosio, A., Panizzi, S.: On the well-posedness of the Kirchhoff string. Trans. Am. Math. Soc. 348(1), 305–330 (1996)

    Article  MathSciNet  Google Scholar 

  4. Boureanu, M.M.: Fourth order problems with Leray–Lions type operators in variable exponent spaces. Discrete Contin. Dyn. Syst. Ser. S. 12(2), 231–243 (2019)

    MathSciNet  Google Scholar 

  5. Boureanu, M.M., Rădulescu, V.D., Repovš, D.: On a \(p(.)\)-biharmonic problem with no-flux boundary condition. Comput. Math. Appl. 72(9), 2505–2515 (2016)

    Article  MathSciNet  Google Scholar 

  6. Boureanu, M.M., Vélez-Santiago, A.: Applied higher-order elliptic problems with nonstandard growth structure. Appl. Math. Lett. 123, 107603 (2022)

    Article  MathSciNet  Google Scholar 

  7. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36(4), 437–477 (1983)

    Article  MathSciNet  Google Scholar 

  8. Cavalcanti, M.M., Cavalcanti, V.N.D., Soriano, J.A.: Global existence and uniform decay rates for the Kirchhoff–Carrier equation with nonlinear dissipation. Adv. Differ. Equ. 6(6), 701–730 (2001)

    MathSciNet  Google Scholar 

  9. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)

    Article  MathSciNet  Google Scholar 

  10. Chu, C., Sun, J.: Multiplicity of positive solutions for a class of p-Kirchhoff equation with critical exponent. Ann. Funct. Anal. 11, 1126–1140 (2020)

    Article  MathSciNet  Google Scholar 

  11. Chung, N.T.: On a class of critical p-biharmonic Kirchhoff type problems with indefinite weights. Bull. Iran. Math. Soc. 47, 1207–1225 (2021)

    Article  MathSciNet  Google Scholar 

  12. Chung, N.T., Ho, K.: On a \(p(x)\)-biharmonic problem of Kirchhoff type involving critical growth. Appl. Anal. 101(16), 5700–5726 (2022)

    Article  MathSciNet  Google Scholar 

  13. Cruz-Uribe, D., Fiorenza, A.: Variable Lebesgue Spaces: Foundations and Harmonic Analysis. Springer, Basel (2013)

    Book  Google Scholar 

  14. Dai, G., Hao, R.: Existence of solutions for a \(p(x)\)-Kirchhoff-type equation. J. Math. Anal. Appl. 359(1), 275–284 (2009)

    Article  MathSciNet  Google Scholar 

  15. Dai, G., Ma, R.: Solution for a \( p(x)\)-Kirchhoff-type equation with Neumann boundary data. Nonlinear Anal. 12(5), 2666–2680 (2011)

    Article  MathSciNet  Google Scholar 

  16. Diening, L., Harjulehto, P., Hästö, P., Ružička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Berlin, Heidelberg (2011)

  17. Edmunds, D.E., Rákosník, J.: Sobolev embeddings with variable exponent. Stud. Math. 143(3), 267–293 (2000)

    Article  MathSciNet  Google Scholar 

  18. El Amrouss, A.R., Ourraoui, A.: Existence of solutions for a boundary problem involving \( p(x)-\)biharmonic operator. Bol. Soc. Parana. Mat. 31(1), 179–192 (2013)

    Article  MathSciNet  Google Scholar 

  19. Fan, X.L., Han, X.: Existence and multiplicity of solutions for \(p(x)\)-Laplacian equations in \(\mathbb{R} ^N \). Nonlinear Anal. 59, 173–188 (2004)

    MathSciNet  Google Scholar 

  20. Fan, X.L., Zhao, D.: On the spaces \( L^{p(x)} \) and \( W^{m, p(x)} \). J. Math. Anal. Appl. 263(2), 424–446 (2001)

    Article  MathSciNet  Google Scholar 

  21. Filali, M., Soualhine, K., Talbi, M., Tsouli, N.: On a \(p(x)\)-Kirchhoff fourth order problem involving Leray–Lions type operators. J. Elliptic Parabol. Equ. 8, 107–126 (2022)

    Article  MathSciNet  Google Scholar 

  22. Garcia Azorero, J., Peral Alonso, I.: Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Am. Math. Soc. 323(2), 877–895 (1991)

    Article  MathSciNet  Google Scholar 

  23. Ho, K., Sim, I.: On degenerate \(p(x)\)-Laplace equations involving critical growth with two parameters. Nonlinear Anal. 132, 95–114 (2016)

    Article  MathSciNet  Google Scholar 

  24. Julio, F., Correa, S.A., Figueiredo, G.M.: On an elliptic equation of \(p\)-Kirchhoff type via variational methods. Bull. Aust. Math. Soc. 74(2), 263–277 (2006)

    Article  MathSciNet  Google Scholar 

  25. Kefi, K., Rădulescu, V.D.: Small perturbations of nonlocal biharmonic problems with variable exponent and competing nonlinearities. Rend. Lincei Mat. Appl. 29(3), 439–463 (2018)

    MathSciNet  Google Scholar 

  26. Kefi, K., Repovš, D., Saoudi, K.: On weak solutions for fourth-order problems involving the Leray–Lions type operators. Math. Methods Appl. Sci. 44(17), 13060–13068 (2022)

    Article  MathSciNet  Google Scholar 

  27. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)

    Google Scholar 

  28. Kováčik, O., Rákosník, J.: On spaces \(L^{p(x)}\) and \(W^{k, p(x)}\). Czechoslov. Math. J. 41(4), 592–618 (1991)

    Article  Google Scholar 

  29. Lions, J.L.: On some questions in boundary value problems of mathematical physics. In: Proceedings of International Symposium on Continuum Mechanics and Partial Differential Equations, Rio de Janeiro 1977, Math. Stud. North Holland, vol. 30, pp. 284–346 (1978)

  30. Lions, P.L.: The concentration compactness principle in the calculus of variations, the limit case (I). Rev. Mat. Iberoam. 1(1), 145–201 (1985)

    Article  MathSciNet  Google Scholar 

  31. Lions, P.L.: The concentration compactness principle in the calculus of variations, the limit case (II). Rev. Mat. Iberoam. 1(2), 45–121 (1985)

    Article  MathSciNet  Google Scholar 

  32. Miao, Q.: Multiple solutions for nonlocal elliptic systems involving \(p(x)\)-biharmonic operator. Mathematics 7(8), 756 (2019)

    Article  Google Scholar 

  33. Musbah, Z., Razani, A.: Multiple solutions for a fourth order problem involving Leray–Lions type operator. São Paulo J. Math. Sci. 16, 1343–1354 (2022)

    Article  MathSciNet  Google Scholar 

  34. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Reg. Conf. Ser. Math, vol. 65. Amer. Math. Soc., Providence, RI (1986)

  35. Rădulescu, V.D., Repovš, D.: Partial differential equations with variable exponents. In: Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, Variational Methods and Qualitative Analysis (2015)

  36. Rajagopal, K., Ružička, M.: Mathematical modelling of electrorheological fluids. Contin. Mech. Thermodyn. 13, 59–78 (2001)

    Article  Google Scholar 

  37. Ružička, M.: Flow of shear dependent electrorheological fluids. C. R. Acad. Sci. Paris Sér. I Math. 329(5), 393–398 (1999)

    Article  MathSciNet  Google Scholar 

  38. Ružička, M.: Electrorheological Fluids: Modeling and Mathematical Theory. Springer, Berlin (2002)

    Google Scholar 

  39. Silva, A.: Multiple solutions for the \(p(x)\)-Laplace operator with critical growth. Adv. Nonlinear Stud. 11, 63–75 (2011)

    Article  MathSciNet  Google Scholar 

  40. Soualhine, K., Filali, M., Talbi, M., Tsouli, N.: A critical p(x)-biharmonic Kirchhoff type problem with indefinite weight under no flux boundary condition. Bol. Soc. Mat. Mex. 28, 22 (2022)

    Article  MathSciNet  Google Scholar 

  41. Talbi, M., Filali, M., Soualhine, K., Tsouli, N.: On a \(p(x)\)-biharmonic Kirchhoff type problem with indefinite weight and no flux boundary condition. Collect. Math. 73(2), 237–252 (2022)

    Article  MathSciNet  Google Scholar 

  42. Willem, M.: Minimax Theorems. Birkhauser, Boston (1996)

    Book  Google Scholar 

  43. Zang, A., Fu, Y.: Interpolation inequalities for derivatives in variable exponent Lebesgue Sobolev spaces. Nonlinear Anal. Theory Methods Appl. 69(10), 3629–3636 (2008)

    Article  MathSciNet  Google Scholar 

  44. Zhihui, W., **nmin, W.: A multiplicity result for quasilinear elliptic equations involving critical Sobolev exponents. Nonlinear Anal. 18(6), 559–567 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Our sincere gratitude goes to the editor and the anonymous referees for their valuable suggestions which contributed significantly to improving the quality of this article

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid Soualhine.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Liliane Maia.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soualhine, K., Talbi, M., Filali, M. et al. On a critical fourth order Leray–Lions \(p(\cdot )\)-Kirchhoff type problem with no-flux boundary condition. São Paulo J. Math. Sci. 18, 277–299 (2024). https://doi.org/10.1007/s40863-024-00403-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40863-024-00403-0

Keywords

Mathematics Subject Classification

Navigation