Log in

Effect of Thread Design Parameters on Central Screw Loosening: A 3D Finite Element Analysis

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

The objective of this study was to evaluate the effect of thread shape outline, thread pitch and preload on the central screw loosening or fracturing by using 3D finite element (FE) method.

Methods

By using a commercial implant system as prototypes, nine central screw models and matching implant components were created by combinations of two parameters with different values: three screw shapes (triangle, buttress and reverse buttress) and three screw pitches (0.2 mm, 0.3 mm and 0.4 mm). These models were inserted into a bone block. After applying pre-tightening torque to each central screw, a 100 N load tilted at 45 degrees was applied to the abutment to simulate an occlusal load. The stability performance of the central screws was evaluated through FE software.

Results

For the central screw shape, the highest stress was always located at the level of the first thread, while the highest stress of the reverse buttress group was always located at the level of the second thread. Triangle (average 650 MPa) and reverse buttress (average 729 MPa) threads were more conducive to reducing central screw stress than buttress thread (average 920 MPa). Moreover, it is necessary to avoid thread parameters design with buttress shape/0.3 mm pitch and buttress shape/0.4 mm pitch.

Conclusion

Thread shape outline and thread pitch significantly influenced central screw stability performance. The central screw with a triangle thread shape and a pitch of 0.2 mm presented the best mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Data used to support the findings of this study are available from the corresponding author under at a reasonable request.

References

  1. Molinero-Mourelle, P., Bischof, F., Yilmaz, B., Schimmel, M., & Abou-Ayash, S. (2022). Clinical performance of tooth implant–supported removable partial dentures: A systematic review and meta-analysis. Clinical Oral Investigations, 26, 6003–6014. https://doi.org/10.1007/s00784-022-04622-7.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Oh, Y. K., Bae, E. B., & Huh, J. B. (2021). Retrospective clinical evaluation of implant-assisted removable partial dentures combined with implant surveyed prostheses. The Journal of Prosthetic Dentistry, 126(1), 76–82. https://doi.org/10.1016/j.prosdent.2020.04.018.

    Article  PubMed  Google Scholar 

  3. Kaptı, Y., Korkmaz, İ. H., & Yanıkoğlu, N. (2024). Comparison of short implant, angled implant, distal extension and grafting methods for atrophic maxillary posterior region: A finite element study. Journal of Medical and Biological Engineering, 44, 57–66. https://doi.org/10.1007/s40846-023-00844-6.

    Article  Google Scholar 

  4. Lee, K. Y., Shin, K. S., Jung, J. H., Cho, H. W., Kwon, K. H., & Kim, Y. L. (2020). Clinical study on screw loosening in dental implant prostheses: A 6-year retrospective study. Journal of Korean Association Oral and Maxillofacial Surgeons, 46(2), 133–142. https://doi.org/10.5125/jkaoms.2020.46.2.133.

    Article  Google Scholar 

  5. Jung, R. E., Pjetursson, B. E., & Glauser, R. (2008). A systematic review of the 5-year survival and complication rates of implant-supported single crowns. Clinical Oral Investigations, 19(2), 119–130. https://doi.org/10.1111/j.1600-0501.2007.01453.x.

    Article  Google Scholar 

  6. Simonis, P., Dufour, T., & Tenenbaum, H. (2010). Long-term implant survival and success: A 10–16-year follow-up of non-submerged dental implants. Clinical oral Implants Research, 21(7), 772–777. https://doi.org/10.1111/j.1600-0501.2010.01912.x.

    Article  PubMed  Google Scholar 

  7. Huang, Y., & Wang, J. (2019). Mechanism of and factors associated with the loosening of the implant abutment screw: A review. Journal of Esthetic and Restorative Dentistry, 31(4), 338–345. https://doi.org/10.1111/jerd.12494.

    Article  PubMed  Google Scholar 

  8. Al-sanea, A., Aktas, S., Celik, T., & Kisioglu, Y. (2023). Effects of the internal contact surfaces of dental implants on screw loosening: A 3-dimensional finite element analysis. The Journal of Prosthetic Dentistry, 130(4), 603e1–603e11. https://doi.org/10.1016/j.prosdent.2023.07.007.

    Article  Google Scholar 

  9. Sun, F., Lv, L., **ang, D., Ba, D., Lin, Z., & Song, G. (2022). Effect of central screw taper angles on the loosening performance and fatigue characteristics of dental implants. Journal of the Mechanical Behavior of Biomedical Materials, 129, 105136. https://doi.org/10.1016/j.jmbbm.2022.105136.

    Article  CAS  PubMed  Google Scholar 

  10. Mosavar, A., Ziaei, A., & Kadkhodaei, M. (2015). The effect of implant thread design on stress distribution in anisotropic bone with different osseointegration conditions: A finite element analysis. International Journal of Oral & Maxillofacial Implants, 30(6), 1317–1326. https://doi.org/10.11607/jomi.4091.

    Article  Google Scholar 

  11. Calì, M., Zanetti, E. M., Oliveri, S. M., Asero, R., Ciaramella, S., Martorelli, M., & Bignardi, C. (2018). Influence of thread shape and inclination on the biomechanical behaviour of plateau implant systems. Dental Materials, 34(3), 460–469. https://doi.org/10.1016/j.dental.2018.01.012.

    Article  PubMed  Google Scholar 

  12. Chowdhary, R., Halldin, A., Jimbo, R., & Wennerberg, A. (2015). Influence of micro threads alteration on osseointegration and primary stability of implants: An FEA and in vivo analysis in rabbits. Clinical Implant Dentistry and Related Research, 17(3), 562–569. https://doi.org/10.1111/cid.12143.

    Article  PubMed  Google Scholar 

  13. de Andrade, C. L., Carvalho, M. A., Bordin, D., da Silva, W., Bel Cury, D., A. A., & Sotto-Maior, B. S. (2017). Biomechanical behavior of the dental implant macrodesign. International Journal of Oral & Maxillofacial Implants, 32(2), 264–270. https://doi.org/10.11607/jomi.4797.

    Article  Google Scholar 

  14. Oswal, M. M., Amasi, U. N., Oswal, M. S., & Bhagat, S. (2016). Influence of three different implant thread designs on stress distribution: A three-dimensional finite element analysis. The Journal of Indian Prosthodontic Society, 16(4), 359–365. https://doi.org/10.4103/0972-4052.191283.

    Article  PubMed  Google Scholar 

  15. Vairo, G., & Sannino, G. (2013). Comparative evaluation of osseointegrated dental implants based on platform-switching concept: influence of diameter, length, thread shape, and in-bone positioning depth on stress-based performance. Computational and Mathematical Methods in Medicine, 2013, 250929. https://doi.org/10.1155/2013/250929.

  16. Fuh, L. J., Hsu, J. T., Huang, H. L., Chen, M. Y. C., & Shen, Y. W. (2013). Biomechanical investigation of thread designs and interface conditions of zirconia and titanium dental implants with bone: Three-dimensional numeric analysis. International Journal of Oral & Maxillofacial Implants, 28(2), e64–71. https://doi.org/10.11607/jomi.2131.

    Article  Google Scholar 

  17. Geramizadeh, M., Katoozian, H., Amid, R., & Kadkhodazadeh, M. (2016). Static, dynamic, and fatigue finite element analysis of dental implants with different thread designs. Journal of long-term Effects of Medical Implants, 26(4), 347–355. https://doi.org/10.1615/JLongTermEffMedImplants.2017020008.

    Article  PubMed  Google Scholar 

  18. Kanneganti, K. C., Vinnakota, D. N., Pottem, S. R., & Pulagam, M. (2018). Comparative effect of implant–abutment connections, abutment angulations, and screw lengths on preloaded abutment screw using three–dimensional finite element analysis: An in vitro study. The Journal of Indian Prosthodontic Society, 18(2), 161–167. https://doi.org/10.4103/jips.jips_219_17.

    Article  PubMed  Google Scholar 

  19. Chen, J., Wang, L., Yang, L., Zhang, X., Huang, B., & Li, J. (2021). The prosthetic screw loosening of two-implant supported screw-retained fixed dental prostheses in the posterior region: A retrospective evaluation and finite element analysis. Journal of Biomechanics, 122(9), 110423. https://doi.org/10.1016/j.jbiomech.2021.110423.

    Article  PubMed  Google Scholar 

  20. Shen, Y. W., Huang, H. L., Hsu, J. T., & Fuh, L. J. (2024). Effects of diameters of implant and abutment screw on stress distribution within dental implant and alveolar bone: A three-dimensional finite element analysis. Journal of Dental Sciences, 19(2), 1126–1134. https://doi.org/10.1016/j.jds.2023.12.020.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Macedo, J. P., Pereira, J., Faria, J., Pereira, C. A., Alves, J. L., Henriques, B., Souza, J. C. M., & López-López, J. (2017). Finite element analysis of stress extent at peri-implant bone surrounding external hexagon or Morse taper implants. Journal of the Mechanical Behavior of Biomedical Materials, 71, 441–447. https://doi.org/10.1016/j.jmbbm.2017.03.011.

    Article  CAS  PubMed  Google Scholar 

  22. Chang, H. C., Li, H. Y., Chen, Y. N., Chang, C. H., & Wang, C. H. (2019). Mechanical analysis of a dental implant system under 3 contact conditions and with 2 mechanical factors. The Journal of Prosthetic Dentistry, 122(4), 376–382. https://doi.org/10.1016/j.prosdent.2018.10.008.

    Article  PubMed  Google Scholar 

  23. Su, K. C., Chang, S. H., Chuang, S. F., & Ng, E. Y. K. (2013). Biomechanical evaluation of endodontic post-restored teeth—finite element analysis. Journal of Mechanics in Medicine and Biology, 13(1), 332–340. https://doi.org/10.1142/S0219519413500127.

    Article  Google Scholar 

  24. Cheng, K., Liu, Y., Yao, C., Zhao, W., & Xu, X. (2019). A personalized mandibular implant with supporting and porous structures designed with topology optimization-a case study of canine. Rapid Prototy** Journal, 25(2), 417–426. https://doi.org/10.1108/RPJ-11-2017-0231.

    Article  Google Scholar 

  25. Li, W., Swain, W. V., Li, Q., & Steven, G. P. (2005). Towards automated 3D finite element modeling of direct fiber reinforced composite dental bridge. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 74(1), 520–528. https://doi.org/10.1002/jbm.b.30233.

    Article  CAS  PubMed  Google Scholar 

  26. Niroomand, M. R., Arabbeiki, M., & Rouhi, G. (2023). Optimization of thread configuration in dental implants through regulating the mechanical stimuli in neighboring bone. Computer Methods and Programs in Biomedicine, 231, 107376. https://doi.org/10.1016/j.cmpb.2023.107376.

    Article  PubMed  Google Scholar 

  27. Ausiello, P., Tribst, J. P. M., Ventre, M., Salvati, E., di Lauro, A. E., Martorelli, M., Lanzotti, A., & Watts, D. C. (2021). The role of cortical zone level and prosthetic platform angle in dental implant mechanical response: A 3D finite element analysis. Dental Materials, 37(11), 1688–1697. https://doi.org/10.1016/j.dental.2021.08.022.

    Article  CAS  PubMed  Google Scholar 

  28. Li, R., Wu, Z., Chen, S., Li, X., Wan, Q., **e, G., & Pei, X. (2023). Biomechanical behavior analysis of four types of short implants with different placement depths using the finite element method. The Journal of Prosthetic Dentistry, 129(3), 447e1–447e10. https://doi.org/10.1016/j.prosdent.2023.01.005.

    Article  Google Scholar 

  29. Zhang, G., Yuan, H., Chen, X., Wang, W., Chen, J., Liang, J., & Zhang, P. (2016). A three-dimensional finite element study on the biomechanical simulation of various structured dental implants and their surrounding bone tissues. International Journal of Dentistry, 2016, 4867402. https://doi.org/10.1155/2016/4867402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Feng, X., Qi, W., Fang, C. X., Lu, W. W., Leung, F. K. L., & Chen, B. (2021). Can barb thread design improve the pullout strength of bone screws? Bone & Joint Research, 10(2), 105–112. https://doi.org/10.1302/2046-3758.102.BJR-2020-0072.R2.

    Article  CAS  Google Scholar 

  31. Yang, F., Ruan, Y., Liu, Y., Chen, J., Chen, Y., Zhang, W., Ding, Y., & Wang, L. (2022). Abutment mechanical complications of a Morse taper connection implant system: A 1-to 9-year retrospective study. Clinical Implant Dentistry and Related Research, 24(5), 683–695. https://doi.org/10.1111/cid.13115.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vandeweghe, S., Cosyn, J., Thevissen, E., Teerlinck, J., & de Bruyn, H. (2012). The influence of implant design on bone remodeling around surface-modified Southern Implants®. Clinical Implant Dentistry and Related Research, 14(5), 655–662. https://doi.org/10.1111/j.1708-8208.2010.00308.x.

    Article  PubMed  Google Scholar 

  33. Pirmoradian, M., Naeeni, H. A., Firouzbakht, M., Toghraie, D., & Darabi, R. (2020). Finite element analysis and experimental evaluation on stress distribution and sensitivity of dental implants to assess optimum length and thread pitch. Computer Methods and Programs in Biomedicine, 187, 105258. https://doi.org/10.1016/j.cmpb.2019.105258.

    Article  PubMed  Google Scholar 

  34. Lee, H., Jo, M., & Noh, G. (2021). Biomechanical effects of dental implant diameter, connection type, and bone density on microgap formation and fatigue failure: A finite element analysis. Computer Methods and Programs in Biomedicine, 200, 105863. https://doi.org/10.1016/j.cmpb.2020.105863

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 52305326), and the Zhejiang Provincial Natural Science Foundation of China (No. LQ23E050016).

Author information

Authors and Affiliations

Authors

Contributions

LX: Conceptualization, Methodology, Software, Writing - original draft preparation, Visualization. KC: Conceptualization, Investigation, Validation, Writing - review & editing, supervision.

Corresponding author

Correspondence to Kang-jie Cheng.

Ethics declarations

Ethical Approval

The protocol for this study was approved by the Ethics Committee of Zhejiang Provincial People’s Hospital (No. QT2022093).

Consent to Participate

Written informed consent was obtained from the parents.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest related to the present work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Lw., Cheng, Kj. Effect of Thread Design Parameters on Central Screw Loosening: A 3D Finite Element Analysis. J. Med. Biol. Eng. (2024). https://doi.org/10.1007/s40846-024-00880-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40846-024-00880-w

Keywords

Navigation