Log in

Acoustic Vortex-Assisted Thrombolysis Treatment in a Pulmonary Embolism Model Using a Miniature Ultrasound Catheter

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

Purpose

Pulmonary embolism (PE) occurs when a blood clot, usually from the deep veins of the legs, travels through the bloodstream and becomes lodged in one of the arteries of the lungs. This blockage can be life-threatening if it significantly impairs blood flow to the lungs. Current therapies for PE, such as anticoagulation and thrombolytic agents, often require prolonged bed rest and carry risks of complications.

Methods

To overcome these limitations, the study designs a submillimeter miniature ultrasound catheter compatible with human pulmonary arterial vessels. This catheter emits acoustic vortex, generated through unique ultrasound waveform interference, to enhance thrombolysis by inducing streaming and lateral forces in the thrombus area.

Results

The microscopic experiments and in vitro sonothrombolysis experiments indicated that the combination of thrombolytic agents and acoustic vortex can increase the thrombolysis efficiency up to 35% comparing with the t-PA only group. The pig experiments confirmed the performance of the miniature ultrasound catheter, where successful thrombolysis was achieved within 2.5 h, along with reduction of pulmonary artery pressure to normal levels.

Conclusion

Overall, this approach presents a promising solution to improve PE treatment outcomes, potentially reducing treatment durations and complications associated with conventional therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Carson, J. L., Kelley, M. A., Duff, A., Weg, J. G., Fulkerson, W. J., Palevsky, H. I., Schwartz, J. S., Thompson, B. T., Popovich, J., Hobbins, T. E., Spera, M. A., Alavi, A., & Terrin, M. L. (1992). The clinical course of pulmonary embolism. New England Journal of Medicine, 326, 1240–1245. https://doi.org/10.1056/NEJM199205073261902

    Article  CAS  PubMed  Google Scholar 

  2. Goldhaber, S. Z., & Bounameaux, H. (2012). Pulmonary embolism and deep vein thrombosis. The Lancet, 379, 1835–1846. https://doi.org/10.1016/S0140

    Article  Google Scholar 

  3. Wiske, C. P., Shen, C., Amoroso, N., Brosnahan, S. B., Goldenberg, R., Horowitz, J., Jamin, C., Sista, A. K., Smith, D., & Maldonado, T. S. (2020). Evaluating time to treatment and in-hospital outcomes of pulmonary embolism response teams. J vasc surg venous Lymphat Disord (pp. 717–724). Elsevier Inc. https://doi.org/10.1016/j.jvsv.2019.12.077

  4. Goel, L., & Jiang, X. (2020). Advances in sonothrombolysis techniques using piezoelectric transducers. Sensors (Switzerland), 20. https://doi.org/10.3390/s20051288

  5. Robles, K. E., Armbruster, A. L., Austin, S. E., & Baker, J. N. (2022). Utilization of EKOS in patients with pulmonary embolism, innovations: Technology and techniques in cardiothoracic and vascular surgery 17 30–36. https://doi.org/10.1177/15569845211057882

  6. Kolkailah, A. A., Hirji, S., Piazza, G., Ejiofor, J. I., Ramirez, F., Del Val, J., Lee, S., McGurk, S. F., Aranki, P. S., Shekar, T., & Kaneko (2018). Surgical pulmonary embolectomy and catheter-directed thrombolysis for treatment of submassive pulmonary embolism. Journal of Cardiac Surgery, 33, 252–259. https://doi.org/10.1111/jocs.13576

    Article  PubMed  Google Scholar 

  7. Soltani, A., Volz, K. R., & Hansmann, D. R. (2008). Effect of modulated ultrasound parameters on ultrasound-induced thrombolysis. Physics in Medicine & Biology, 53, 6837–6847. https://doi.org/10.1088/0031-9155/53/23/012

    Article  Google Scholar 

  8. Guo, S., Guo, X., Wang, X., Zhou, D., Du, X., Han, M., Zong, Y., & Wan, M. (2019). Reduced clot debris size in sonothrombolysis assisted with phase-change nanodroplets. Ultrasonics Sonochemistry, 54, 183–191. https://doi.org/10.1016/j.ultsonch.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  9. De Saint Victor, M., Crake, C., Coussios, C. C., & Stride, E. (2014). Properties, characteristics and applications of microbubbles for sonothrombolysis. Expert Opinion on Drug Delivery, 11, 187–209. https://doi.org/10.1517/17425247.2014.868434

    Article  CAS  PubMed  Google Scholar 

  10. Goel, L., Wu, H., Zhang, B., Kim, J., Dayton, P. A., Xu, Z., & Jiang, X. (2021). Nanodroplet-mediated catheter-directed sonothrombolysis of retracted blood clots. Microsyst Nanoeng, 7. https://doi.org/10.1038/s41378-020-00228-9

  11. Liu, Y., & Luo, J. (2023). Experimental study on damage mechanism of blood vessel by cavitation bubbles. Ultrasonics Sonochemistry, 99. https://doi.org/10.1016/j.ultsonch.2023.106562

  12. Kang, S. T., & Yeh, C. K. (2010). Potential-well model in acoustic tweezers. Ieee Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57, 1451–1459. https://doi.org/10.1109/TUFFC.2010.1564

    Article  PubMed  Google Scholar 

  13. Lo, W. C., Fan, C. H., Ho, Y. J., Lin, C. W., & Yeh, C. K. Tornado-inspired acoustic vortex tweezer for trap** and manipulating microbubbles, (n.d.). https://doi.org/10.1073/pnas.2023188118/-/DCSupplemental

  14. Kim, H., Zhang, B., Wu, H., Yao, J., Shi, C., & Jiang, X. (2023). Vortex-ultrasound for microbubble-mediated thrombolysis of retracted clots. Applied Physics Letters, 123. https://doi.org/10.1063/5.0155223

  15. Khan, K., Yamamura, D., Vargas, C., Alexander, T., & SuraniS.R. (2019). The role of EkoSonic endovascular system or EKOS® in pulmonary embolism. Cureus. https://doi.org/10.7759/cureus.6380

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhou, Y., Murugappan, S. K., & Sharma, V. K. (2014). Effect of clot aging and cholesterol content on ultrasound-assisted thrombolysis. Transl Stroke Res, 5, 627–634. https://doi.org/10.1007/s12975-014-0332-3

    Article  CAS  PubMed  Google Scholar 

  17. Acconcia, C., Leung, B. Y. C., Manjunath, A., & Goertz, D. E. (2014). Interactions between individual ultrasound-stimulated microbubbles and fibrin clots. Ultrasound in Medicine and Biology, 40, 2134–2150. https://doi.org/10.1016/j.ultrasmedbio.2014.03.008

    Article  PubMed  Google Scholar 

  18. Schultz, J., Andersen, A., Gade, I. L., Ringgaard, S., Kjaergaard, B., & Nielsen-Kudsk, J. E. (2018). A porcine in-vivo model of acute pulmonary embolism. Pulm Circ, 8. https://doi.org/10.1177/2045893217738217

  19. Shackelford, C., Long, G., Wolf, J., Okerberg, C., & Herbert, R. (2002). Quantitative toxicologic pathology qualitative and quantitative analysis of nonneoplastic lesions in toxicology studies.

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Wei-Chen Lo and I-Ta Chung for manufacturing the submillimeter ultrasound transducer and the support of the National Science and Technology Council, Taiwan 110-2221-E-007-019-MY3, 110-2622-B-007-002, 111-2622-B-007-001 and 111-2221-E-007-019-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Kuang Yeh.

Ethics declarations

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the IACUC of Pigmodel Animal TechnoIogy Co., Ltd. (Date: 2023/11/19;No R1_PIG-111012 and Date: 2023/12/27; PIG-112013).

Conflict of Interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsieh, ZH., Lai, CY., Chen, NH. et al. Acoustic Vortex-Assisted Thrombolysis Treatment in a Pulmonary Embolism Model Using a Miniature Ultrasound Catheter. J. Med. Biol. Eng. 44, 478–487 (2024). https://doi.org/10.1007/s40846-024-00878-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-024-00878-4

Keywords

Navigation