Log in

Full β-Ga2O3 films-based p-n homojunction

全氧化镓薄膜同质p-n结

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Fabricating the p-n junction and exploring the device physics play key roles in develo** various functional devices and promoting their practical applications. Although ultrawide bandgap semiconductors have great potentials to fabricate high-voltage and high-efficiency power devices, the lack of p-type Ga2O3 poses a fundamental obstacle for fabricating the Ga2O3 p-n homojunction and impedes the development of full Ga2O3-based bipolar devices. In this study, n-type Sn-doped β-Ga2O3/p-type N-doped β-Ga2O3 films are prepared by a novel phase-transition growth technique combined with sputter deposition. Full β-Ga2O3 one-sided abrupt p-n homojunction diodes are fabricated and the device physics are explored in detail. The diodes possess a high rectification ratio of 4 × 104, a low specific on-resistance of 9.18 mΩ cm2 at 40 V, a built-in potential of 4.41 V, and an ideal factor of 1.78, and also show a good rectification behavior under alternating voltage with no overshoot and longterm stability. Our results clear away the major obstacle to β-Ga2O3 p-n homojunction, lay the foundation for β-Ga2O3 homogeneous bipolar devices, and pave the way for the evolution of high-voltage and high-power device applications.

摘要

制备p-n结以及探索其物理机制在发展各种功能器件和推进其 实际应用中起到关键作用. 超宽禁带半导体在制备高压高频器件上有 着巨大的潜力, 但是氧化镓p型掺杂困难限制了氧化镓同质p-n结的制 备, 进而阻碍了全氧化镓基双极型器件的发展. 本文通过一种先进的相 转变生长技术结合溅射镀膜的方法, 成功制备了n型锡掺杂β相氧化镓/p型氮掺杂β相氧化镓薄膜. 本工作成功制作了全氧化镓单边突变同质 p-n结二极管, 并且详细分析了器件机理. 该二极管实现了4 × 104 的整 流比、在40 V下9.18 mΩ cm2 的低导通电阻、4.41 V的内建电势和1.78 的理想因子, 并在交流电压下表现出没有过冲的整流特性以及长期稳 定性. 本工作为氧化镓同质p-n结初窥门径, 为氧化镓同质双极型器件 奠定了基础, 为高压高功率器件的应用开创了道路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Peelaers H, Lyons JL, Varley JB, et al. Deep acceptors and their diffusion in Ga2O3. APL Mater, 2019, 7: 022519

    ADS  Google Scholar 

  2. Stampfl C, Van de Walle CG. Do** of ALxGa1−xN. Appl Phys Lett, 1998, 72: 459–461

    ADS  CAS  Google Scholar 

  3. Lu S, Shen P, Zhang H, et al. Towards n-type conductivity in hexagonal boron nitride. Nat Commun, 2022, 13: 3109

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sharma R, Law ME, Ren F, et al. Diffusion of dopants and impurities in β-Ga2O3. J Vacuum Sci Tech A-Vacuum Surfs Films, 2021, 39: 060801

    ADS  CAS  Google Scholar 

  5. Chikoidze E, Fellous A, Perez-Tomas A, et al. p-type β-gallium oxide: A new perspective for power and optoelectronic devices. Mater Today Phys, 2017, 3: 118–126

    Google Scholar 

  6. Lyons JL. A survey of acceptor dopants for β-Ga2O3. Semicond Sci Technol, 2018, 33: 05LT02

    Google Scholar 

  7. Neal AT, Mou S, Rafique S, et al. Donors and deep acceptors in β-Ga2O3. Appl Phys Lett, 2018, 113: 062101

    ADS  Google Scholar 

  8. Islam MM, Rana D, Hernandez A, et al. Study of trap levels in β-Ga2O3 by thermoluminescence spectroscopy. J Appl Phys, 2019, 125: 055701

    ADS  Google Scholar 

  9. Lu X, Zhou X, Jiang H, et al. 1-kV sputtered p-NiO/n-Ga2O3 heterojunction diodes with an ultra-low leakage current below µA/cm2. IEEE Electron Device Lett, 2020, 41: 449–452

    ADS  CAS  Google Scholar 

  10. Gong H, Chen X, Xu Y, et al. Band alignment and interface recombination in NiO/β-Ga2O3 type-II p-n heterojunctions. IEEE Trans Electron Devices, 2020, 67: 3341–3347

    ADS  CAS  Google Scholar 

  11. Gong HH, Chen XH, Xu Y, et al. A 1.86-kV double-layered NiO/β-Ga2O3 vertical p-n heterojunction diode. Appl Phys Lett, 2020, 117: 022104

    ADS  CAS  Google Scholar 

  12. Hao W, He Q, Zhou K, et al. Low defect density and small I-V curve hysteresis in NiO/β-Ga2O3 pn diode with a high PFOM of 0.65 GW/cm2. Appl Phys Lett, 2021, 118: 043501

    ADS  CAS  Google Scholar 

  13. Liu Y, Wang L, Zhang Y, et al. Demonstration of n-Ga2O3/p-GaN diodes by wet-etching lift-off and transfer-print technique. IEEE Electron Device Lett, 2021, 42: 509–512

    ADS  CAS  Google Scholar 

  14. Wang C, Gong H, Lei W, et al. Demonstration of the p-NiOx/n-Ga2O3 heterojunction gate FETs and diodes with BV2/Ron-sp figures of merit of 0.39 GW/cm2 and 1.38 GW/cm2. IEEE Electron Device Lett, 2021, 42: 485–488

    ADS  CAS  Google Scholar 

  15. Wang H, **ang G, Zhou Y, et al. Excellent electroluminescence and electrical characteristics from p-CuO/i-Ga2O3/n-GaN light-emitting diode prepared by magnetron sputtering. J Lumin, 2022, 243: 118621

    CAS  Google Scholar 

  16. Zhang ZH, Liu W, Ju Z, et al. Self-screening of the quantum confined Stark effect by the polarization induced bulk charges in the quantum barriers. Appl Phys Lett, 2014, 104: 243501

    ADS  Google Scholar 

  17. Zhang ZH, Liu W, Ju Z, et al. InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination. Appl Phys Lett, 2014, 105: 33506

    Google Scholar 

  18. Clinton EA, Engel Z, Vadiee E, et al. Ultra-wide-bandgap AlGaN homojunction tunnel diodes with negative differential resistance. Appl Phys Lett, 2019, 115: 082104

    ADS  Google Scholar 

  19. Dhruv SD, Dhruv DK. Anomalous current-voltage and impedance behaviour in heterojunction diode. Mater Today-Proc, 2022, 55: A1–A6

    Google Scholar 

  20. Chikoidze E, Sartel C, Mohamed H, et al. Enhancing the intrinsic p-type conductivity of the ultra-wide bandgap Ga2O3 semiconductor. J Mater Chem C, 2019, 7: 10231–10239

    CAS  Google Scholar 

  21. Cai X, Sabino FP, Janotti A, et al. Approach to achieving a p-type transparent conducting oxide: Do** ofbismuth-alloyed Ga2O3 with a strongly correlated band edge state. Phys Rev B, 2021, 103: 115205

    ADS  CAS  Google Scholar 

  22. Su Y, Guo D, Ye J, et al. Deep level acceptors of Zn-Mg divalent ions dopants in β-Ga2O3 for the difficulty to p-type conductivity. J Alloys Compd, 2019, 782: 299–303

    CAS  Google Scholar 

  23. Zhang C, Li Z, Wang W. Critical thermodynamic conditions for the formation of p-type β-Ga2O3 with Cu do**. Materials, 2021, 14: 5161

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang D, Ge K, Meng D, et al. p-type β-Ga2O3 films were prepared by Zn-do** using RF magnetron sputtering. Mater Lett, 2023, 330: 133251

    CAS  Google Scholar 

  25. Zhou X, Li M, Zhang J, et al. High quality p-type Mg-doped β-Ga2O3−δ films for solar-blind photodetectors. IEEE Electron Device Lett, 2022, 43: 580–583

    ADS  CAS  Google Scholar 

  26. Ebrahimi-Darkhaneh H, Shekarnoush M, Arellano-Jimenez J, et al. High-quality Mg-doped p-type Ga2O3 crystalline thin film by pulsed laser. J Mater Sci-Mater Electron, 2022, 33: 24244–24259

    CAS  Google Scholar 

  27. Chikoidze E, Sartel C, Yamano H, et al. Electrical properties of p-type Zn:Ga2O3 thin films. J Vacuum Sci Tech A, 2022, 40: 043401

    CAS  Google Scholar 

  28. Saikumar AK, Sundaresh S, Sundaram KB. Preparation and characterization of p-type copper gallium oxide (CuGaO2) thin films by dual sputtering using Cu and Ga2O3 targets. ECS J Solid State Sci Technol, 2022, 11: 065010

    ADS  CAS  Google Scholar 

  29. Bai R, Zhao B, Ling K, et al. Dilute-selenium alloying: A possible perspective for achieving p-type conductivity of β-gallium oxide. J Alloys Compd, 2022, 891: 161969

    CAS  Google Scholar 

  30. Wu ZY, Jiang ZX, Ma CC, et al. Energy-driven multi-step structural phase transition mechanism to achieve high-quality p-type nitrogen-doped β-Ga2O3 films. Mater Today Phys, 2021, 17: 100356

    CAS  Google Scholar 

  31. Jiang ZX, Wu ZY, Ma CC, et al. p-type β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors with extremely high responsivity and gain-bandwidth product. Mater Today Phys, 2020, 14: 100226

    Google Scholar 

  32. Lovejoy TC, Chen R, Zheng X, et al. Band bending and surface defects in β-Ga2O3. Appl Phys Lett, 2012, 100: 181602

    ADS  Google Scholar 

  33. Navarro-Quezada A, Alamé S, Esser N, et al. Near valence-band electronic properties of semiconducting β-Ga2O3 (100) single crystals. Phys Rev B, 2015, 92: 1–5

    Google Scholar 

  34. Ma C, Wu Z, Jiang Z, et al. Exploring the feasibility and conduction mechanisms of p-type nitrogen-doped β-Ga2O3 with high hole mobility. J Mater Chem C, 2022, 10: 6673–6681

    CAS  Google Scholar 

  35. Ma C, Wu Z, Zhang H, et al. p-type nitrogen-doped β-Ga2O3: The role of stable shallow acceptor NO-VGa complexes. Phys Chem Chem Phys, 2023, 25: 13766–13771

    CAS  PubMed  Google Scholar 

  36. Kuroda N, Sasaoka C, Kimura A, et al. Precise control of pn-junction profiles for GaN-based LD structures using GaN substrates with low dislocation densities. J Cryst Growth, 1998, 189–190: 551–555

    ADS  Google Scholar 

  37. Yoshizumi Y, Hashimoto S, Tanabe T, et al. High-breakdown-voltage pn-junction diodes on GaN substrates. J Cryst Growth, 2007, 298: 875–878

    ADS  CAS  Google Scholar 

  38. He H, Orlando R, Blanco MA, et al. First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys Rev B, 2006, 74: 195123

    ADS  Google Scholar 

  39. Fan Q, Zhao R, Zhang W, et al. Low-energy Ga2O3 polymorphs with low electron effective masses. Phys Chem Chem Phys, 2022, 24: 7045–7049

    CAS  PubMed  Google Scholar 

  40. Zhang J, Dong P, Dang K, et al. Ultra-wide bandgap semiconductor Ga2O3 power diodes. Nat Commun, 2022, 13: 3900

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gong H, Yu X, Xu Y et al. Vertical field-plated NiO/Ga2O3 heterojunction power diodes. In: 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM). Chengdu: IEEE, 2021. 1–3

    Google Scholar 

  42. Shimbori A, Wong HY, Huang AQ. Fabrication and analysis of a novel high voltage heterojunction p-NiO/n-Ga2O3 diode. In: 2020 32nd International Symposium on Power Semiconductor Devices and ICs (ISPSD). Vienna: IEEE, 2020. 218–221

    Google Scholar 

  43. Snigurenko D, Guziewicz E, Krajewski TA, et al. N and Al co-do** as a way to p-type ZnO without post-growth annealing. Mater Res Express, 2016, 3: 125907

    ADS  Google Scholar 

  44. Kumari C, Pandey A, Dixit A. Improved rectification behaviour in ZnO nanorods homojunction by suppressing Li donor defects using Li-Ni co-do**. Superlattices MicroStruct, 2019, 132: 106154

    CAS  Google Scholar 

  45. Wu G, Tian B, Liu L, et al. Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat Electron, 2020, 3: 43–50

    CAS  Google Scholar 

  46. Zhong F, Ye J, He T, et al. Substitutionally doped MoSe2 for high-performance electronics and optoelectronics. Small, 2021, 17: 2102855

    CAS  Google Scholar 

  47. A SM, Joseph JA, Nair BG, et al. Enhanced photocatalytic activity of nZnO/n+ Al:ZnO homojunction with an overlayer of Al2O3 nanoballs. J Phys D-Appl Phys, 2022, 55: 175108

    ADS  Google Scholar 

  48. Li Y, **: Excellent self-powered photovoltaic photodetector. Adv Funct Mater, 2023, 33: 2213385

    CAS  Google Scholar 

  49. Tan C, Wang H, Zhu X, et al. A self-powered photovoltaic photodetector based on a lateral WSe2-WSe2 homojunction. ACS Appl Mater Interfaces, 2020, 12: 44934–44942

    CAS  PubMed  Google Scholar 

  50. Li Q, Du BD, Gao JY, et al. Liquid metal gallium-based printing of Cudoped p-type Ga2O3 semiconductor and Ga2O3 homojunction diodes. Appl Phys Rev, 2023, 10: 011402

    CAS  Google Scholar 

  51. Mohamed M, Irmscher K, Janowitz C, et al. Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3. Appl Phys Lett, 2012, 101: 132106

    ADS  Google Scholar 

  52. Janowitz C, Scherer V, Mohamed M, et al. Experimental electronic structure of In2O3 and Ga2O3. New J Phys, 2011, 13: 085014

    Google Scholar 

  53. Shklovskii BI, Efros AL. Variable-range hop** conduction. In: Shklovskii BI, Efros AL. Electronic Properties of Doped Semiconductors. Berlin, Heidelberg: Springer, 1984. 202–227

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2022YFB3605500 and 2022YFB3605503), the National Natural Science Foundation of China (62074039 and 12004074), China Postdoctoral Science Foundation (2020M681141), and the National Postdoctoral Program for Innovative Talents (BX20190070).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Fang Z conceived the idea. Fang Z, Zhai H and Wu Z designed the experiments. Zhai H and Liu C carried out the material synthesis and characterized the β-Ga2O3 p-n homojunction. Ma C, Zhai H, Fang Z and Wu Z contributed to the theoretical calculations. Zhai H and Fang Z drafted the manuscript. Fang Z, Zhai H, Liu C, Wu Z, Ma C, Tian P, Wan J, Kang J and Chu J revised and proofread the manuscript.

Corresponding author

Correspondence to Zhilai Fang  (方志来).

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Supplementary information Supporting data are available in the online version of the paper.

Hongchao Zhai received his Bachelor’s degree in electrical engineering and automation from Fudan University and now is pursuing his PhD degree in physical electronics at Fudan University. His current research focuses on the β-Ga2O3 devices, including p-n junctions and gas sensors.

Zhilai Fang received his PhD degree from the Chinese University of Hong Kong and worked as a postdoctoral researcher at Humboldt University of Berlin. He is currently a professor at the School of Information Science and Technology, Fudan University. His current research focuses on the β-Ga2O3-based materials and devices.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhai, H., Liu, C., Wu, Z. et al. Full β-Ga2O3 films-based p-n homojunction. Sci. China Mater. 67, 898–905 (2024). https://doi.org/10.1007/s40843-023-2741-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2741-4

Keywords

Navigation