Log in

External-field-driven molecular polarization manipulates reactant interface toward efficient hydrogen evolution

外场驱动分子极化调控反应物界面及其电催化析氢 性能

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

The reaction interface which governs the electrocatalytic behavior is notoriously hard to understand due to inadequate regulatory and detection methods. By using on-chip microdevices, we employ variable back-gate voltages to generate molecular polarization and thus fine-tune the concentration of hydronium ions (H3O+) in electrochemical double layers for efficient hydrogen evolution. Taking C60/ MoS2 heterojunction as a prototype, electrical tests reveal that the back-gate promotes the charge transfer from C60 to MoS2, leading to the polarization of C60. In situ photoluminescence spectra verify that the polarized C60 can attract H3O+ to accumulate in the vicinity of MoS2 in the external electric field. Profiting from the back-gated H3O+ enrichment, the hydrogen evolution current is increased by five times at −0.45 VRHE when a 1.5-V back-gate voltage is applied. The insight into the reaction interface from manipulation to detection can facilitate diverse catalytic reactions.

摘要

反应物界面对电催化反应至关重要. 然而, 由于调控和表征手段 的不足, 对反应物界面的深入研究仍难以实现. 本文中, 我们借助单片 电催化微纳器件, 通过调节背栅电压引入分子极化, 实现了对电化学双 电层中水合氢离子(H3O+)浓度的调控, 进而提高了催化剂的电催化析 氢性能. 以C60/MoS2异质结为例, 电学性能测试表明背栅电场促进了电 子从C60向MoS2的转移, 并导致了C60分子的极化. 原位光致发光光谱表 征显示, 在背栅电场的作用下, 极化的C60分子会吸引H3O+, 使其聚集在 MoS2附**. 而电催化测试表明, 在1.5 V背栅电压下, 由于发生了H3O+的 富集, C60/MoS2异质结在−0.45 VRHE电位下的析氢电流密度增加了5倍. 我们提出的调控和监测反应物界面的方法能够促进对多种电催化反应 的研究.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature, 2012, 488: 294–303

    Article  CAS  Google Scholar 

  2. Seh ZW, Kibsgaard J, Dickens CF, et al. Combining theory and experiment in electrocatalysis: Insights into materials design. Science, 2017, 355: eaad4998

    Article  Google Scholar 

  3. Wen Q, Lin Y, Yang Y, et al. In situ chalcogen leaching manipulates reactant interface toward efficient amine electrooxidation. ACS Nano, 2022, 16: 9572–9582

    Article  CAS  Google Scholar 

  4. Wang W, Zhu YB, Wen Q, et al. Modulation of molecular spatial distribution and chemisorption with perforated nanosheets for ethanol electro-oxidation. Adv Mater, 2019, 31: 1900528

    Article  Google Scholar 

  5. Li J, Hu J, Zhang M, et al. A fundamental viewpoint on the hydrogen spillover phenomenon of electrocatalytic hydrogen evolution. Nat Commun, 2021, 12: 3502

    Article  CAS  Google Scholar 

  6. Tong X, Zhao Y, Zhuo Z, et al. Dual-regulation of defect sites and vertical conduction by spiral domain for electrocatalytic hydrogen evolution. Angew Chem Int Ed, 2022, 61: e202112953

    Article  CAS  Google Scholar 

  7. Masurkar N, Thangavel NK, Arava LMR. CVD-grown MoSe2 nano-flowers with dual active sites for efficient electrochemical hydrogen evolution reaction. ACS Appl Mater Interfaces, 2018, 10: 27771–27779

    Article  CAS  Google Scholar 

  8. Wang W, Wang Y, Yang R, et al. Vacancy-rich Ni(OH)2 drives the electrooxidation of amino C–N bonds to nitrile C≡N bonds. Angew Chem Int Ed, 2020, 59: 16974–16981

    Article  CAS  Google Scholar 

  9. Li HJW, Zhou H, Zhou Y, et al. Electric-field promoted C–C coupling over Cu nanoneedles for CO2 electroreduction to C2 products. Chin J Catal, 2022, 43: 519–525

    Article  CAS  Google Scholar 

  10. Zhang Y, Ji Q, Han GF, et al. Dendritic, transferable, strictly monolayer MoS2 flakes synthesized on SrTiO3 single crystals for efficient electrocatalytic applications. ACS Nano, 2014, 8: 8617–8624

    Article  CAS  Google Scholar 

  11. Chen Z, Song Y, Zhang Z, et al. Mechanically induced Cu active sites for selective C–C coupling in CO2 electroreduction. J Energy Chem, 2022, 74: 198–202

    Article  CAS  Google Scholar 

  12. Wang W, Wang Z, Yang R, et al. In situ phase separation into coupled interfaces for promoting CO2 electroreduction to formate over a wide potential window. Angew Chem Int Ed, 2021, 60: 22940–22947

    Article  CAS  Google Scholar 

  13. Yang R, Duan J, Dong P, et al. In situ halogen-ion leaching regulates multiple sites on tandem catalysts for efficient CO2 electroreduction to C2+ products. Angew Chem Int Ed, 2022, 61: e202116706

    Article  CAS  Google Scholar 

  14. Duan J, Liu T, Zhao Y, et al. Active and conductive layer stacked superlattices for highly selective CO2 electroreduction. Nat Commun, 2022, 13: 2039

    Article  CAS  Google Scholar 

  15. Wen Q, Duan J, Wang W, et al. Engineering a local free water enriched microenvironment for surpassing platinum hydrogen evolution activity. Angew Chem Int Ed, 2022, 61: e202206077

    Article  CAS  Google Scholar 

  16. He Y, He Q, Wang L, et al. Self-gating in semiconductor electrocatalysis. Nat Mater, 2019, 18: 1098–1104

    Article  CAS  Google Scholar 

  17. Wang J, Yan M, Zhao K, et al. Field effect enhanced hydrogen evolution reaction of MoS2 nanosheets. Adv Mater, 2017, 29: 1604464

    Article  Google Scholar 

  18. Wu Y, Li D, Wu CL, et al. Electrostatic gating and intercalation in 2D materials. Nat Rev Mater, 2023, 8: 41–53

    Article  Google Scholar 

  19. Wang Y, Udyavara S, Neurock M, et al. Field effect modulation of electrocatalytic hydrogen evolution at back-gated two-dimensional MoS2 electrodes. Nano Lett, 2019, 19: 6118–6123

    Article  CAS  Google Scholar 

  20. Wu CL, Yuan H, Li Y, et al. Gate-induced metal-insulator transition in MoS2 by solid superionic conductor LaF3. Nano Lett, 2018, 18: 2387–2392

    Article  CAS  Google Scholar 

  21. Wu Y, Ringe S, Wu CL, et al. A two-dimensional MoS2 catalysis transistor by solid-state ion gating manipulation and adjustment (SIGMA). Nano Lett, 2019, 19: 7293–7300

    Article  CAS  Google Scholar 

  22. Huang J, Zhuang Z, Zhao Y, et al. Back-gated van der Waals hetero-junction manipulates local charges toward fine-tuning hydrogen evolution. Angew Chem Int Ed, 2022, 61: e202203522

    Article  CAS  Google Scholar 

  23. Choi H, Surendran S, Sim Y, et al. Enhanced electrocatalytic full water-splitting reaction by interfacial electric field in 2D/2D heterojunction. Chem Eng J, 2022, 450: 137789

    Article  CAS  Google Scholar 

  24. Li HJW, Cai C, Wang Q, et al. High-performance alkaline water splitting by Ni nanoparticle-decorated Mo-Ni microrods: Enhanced ion adsorption by the local electric field. Chem Eng J, 2022, 435: 134860

    Article  CAS  Google Scholar 

  25. Gao P, Xue ZH, Zhang SN, et al. Schottky barrier-induced surface electric field boosts universal reduction of NOx in water to ammonia. Angew Chem Int Ed, 2021, 60: 20711–20716

    Article  CAS  Google Scholar 

  26. Yang H, He Q, Liu Y, et al. On-chip electrocatalytic microdevice: An emerging platform for expanding the insight into electrochemical processes. Chem Soc Rev, 2020, 49: 2916–2936

    Article  CAS  Google Scholar 

  27. Zhang Y, Ye J, Matsuhashi Y, et al. Ambipolar MoS2 thin flake transistors. Nano Lett, 2012, 12: 1136–1140

    Article  CAS  Google Scholar 

  28. Zhang YJ, Ye JT, Yomogida Y, et al. Formation of a stable p-n junction in a liquid-gated MoS2 ambipolar transistor. Nano Lett, 2013, 13: 3023–3028

    Article  CAS  Google Scholar 

  29. Liu X, Li B, Li X, et al. The critical role of electrolyte gating on the hydrogen evolution performance of monolayer MoS2. Nano Lett, 2019, 19: 8118–8124

    Article  CAS  Google Scholar 

  30. Guo Y, Chen Q, Nie A, et al. 2D hybrid superlattice-based on-chip electrocatalytic microdevice for in situ revealing enhanced catalytic activity. ACS Nano, 2020, 14: 1635–1644

    Article  CAS  Google Scholar 

  31. You H, Zhuo Z, Lu X, et al. 1T’-MoTe2-based on-chip electrocatalytic microdevice: A platform to unravel oxidation-dependent electrocatalysis. CCS Chem, 2019, 1: 396–406

    Article  CAS  Google Scholar 

  32. Puente Santiago AR, He T, Eraso O, et al. Tailoring the interfacial interactions of van der Waals 1T-MoS2/C60 heterostructures for highperformance hydrogen evolution reaction electrocatalysis. J Am Chem Soc, 2020, 142: 17923–17927

    Article  CAS  Google Scholar 

  33. Li Z, Ye R, Feng R, et al. Graphene quantum dots do** of MoS2 monolayers. Adv Mater, 2015, 27: 5235–5240

    Article  CAS  Google Scholar 

  34. Liu B, Zhang Z, Liao K, et al. Tuning optical properties of monolayer MoS2 through the 0D/2D interfacial effect with C60 nanoparticles. Appl Surf Sci, 2020, 523: 146371

    Article  CAS  Google Scholar 

  35. Mak KF, He K, Lee C, et al. Tightly bound trions in monolayer MoS2. Nat Mater, 2013, 12: 207–211

    Article  CAS  Google Scholar 

  36. Golovynskyi S, Irfan I, Bosi M, et al. Exciton and trion in few-layer MoS2: Thickness- and temperature-dependent photoluminescence. Appl Surf Sci, 2020, 515: 146033

    Article  CAS  Google Scholar 

  37. Pei J, Yang J, Xu R, et al. Exciton and trion dynamics in bilayer MoS2. Small, 2015, 11: 6384–6390

    Article  CAS  Google Scholar 

  38. Zhao Y, Bertolazzi S, Maglione MS, et al. Molecular approach to electrochemically switchable monolayer MoS2 transistors. Adv Mater, 2020, 32: 2000740

    Article  CAS  Google Scholar 

  39. Lin X, Wang X, Zhou Q, et al. Magnetically recyclable MoS2/Fe3O4 hybrid composite as visible light responsive photocatalyst with enhanced photocatalytic performance. ACS Sustain Chem Eng, 2018, 7: 1673–1682

    Article  Google Scholar 

  40. Zheng J, Lebedev K, Wu S, et al. High loading of transition metal single atoms on chalcogenide catalysts. J Am Chem Soc, 2021, 143: 7979–7990

    Article  CAS  Google Scholar 

  41. Yang H, Zhao Y, Wen Q, et al. Single WTe2 sheet-based electrocatalytic microdevice for directly detecting enhanced activity of doped electronegative anions. ACS Appl Mater Interfaces, 2021, 13: 14302–14311

    Article  CAS  Google Scholar 

  42. Yang H, Zhao Y, Wen Q, et al. Single MoTe2 sheet electrocatalytic microdevice for in situ revealing the activated basal plane sites by vacancies engineering. Nano Res, 2021, 14: 4814–4821

    Article  CAS  Google Scholar 

  43. Rogée L, Wang L, Zhang Y, et al. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science, 2022, 376: 973–978

    Article  Google Scholar 

  44. Hsiao FH, Chung CC, Chiang CH, et al. Using exciton/trion dynamics to spatially monitor the catalytic activities of MoS2 during the hydrogen evolution reaction. ACS Nano, 2022, 16: 4298–4307

    Article  CAS  Google Scholar 

  45. Yang S, Zhao X, Lu YH, et al. Nature of the electrical double layer on suspended graphene electrodes. J Am Chem Soc, 2022, 144: 13327–13333

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (22071069 and 22275060). We also acknowledge technical support from the Analytical and Testing Center at Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

Zhai T and Liu Y supervised the project. Zhao Y conducted all the experiments, during which Huang J, Chen J, Chen B, and Gan X gave some help. Wen Q, Li H and Duan J assisted Zhao Y in analyzing the data and solving problems. Zhao Y wrote the paper with the help of all coauthors.

Corresponding author

Correspondence to Youwen Liu  (刘友文).

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Supplementary information

Calculation details and supporting data are available in the online version of the paper.

Yang Zhao received his BS degree from Huazhong University of Science and Technology in 2020. He is currently a postgraduate at the School of Materials Science and Engineering under the supervision of Prof. Tianyou Zhai and Dr. Youwen Liu at Huazhong University of Science and Technology. His work focuses on on-chip electrocatalysis.

Youwen Liu received his BS degree from China University of Geosciences in 2012, and his PhD degree in inorganic chemistry from the University of Science and Technology of China in 2017. Then he joined the School of Materials Science and Engineering, Huazhong University of Science and Technology as an associate professor. His current research interests include the design, synthesis, and regulation of electrocatalytic materials.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Huang, J., Chen, J. et al. External-field-driven molecular polarization manipulates reactant interface toward efficient hydrogen evolution. Sci. China Mater. 66, 3501–3508 (2023). https://doi.org/10.1007/s40843-023-2480-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-023-2480-x

Keywords

Navigation