Log in

Manufacture of porous metallic glass using dissolvable templates

溶解制造多孔金属玻璃

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

A facile, precise, and controllable manufacturing technology is desired for hierarchical functional surfaces. In this work, we successfully manufactured porous metallic glass using a water-dissolution material as template and the excellent thermoplastic property of metallic glass. The prepared micro/nanostructures have excellent tunability, and the proposed approach can be used to prepare large-area disordered porous structures and ordered regular arrays with nanoscale replication accuracy. In particular, the disordered porous structure prepared by the dissolvable template strategy exhibits a water contact angle of ∼140° and an oil contact angle of ∼0°, making it suitable for oil/water separation. It also shows stable wettability after being soaked in strong acid or alkali environments and maintains a ∼130° water contact angle and a ∼4° oil contact angle even after severe wear. The proposed strategy also possesses excellent recycling properties. We reconstructed porous structures on the same surface three times and found no significant change in wettability for each reconstructed porous structure. Our research provides a facile and controllable approach for the preparation of hierarchical porous structures and paves the way for the design of other functional surfaces.

摘要

简单、精密、可控的制造技术在功能表面中具有广阔的应用前景. 在这项工作中, 我们通过使用食盐这种水溶性材料作为模板, 利用金属玻璃优异的热塑成型性能, 成功地实现了多孔金属玻璃的溶解制造. 通过这种溶解制造方法制备的微/纳米结构具有良好的可调控性, 不仅可以制备大面积多孔结构, 还可以制备具有纳米级复制精度的有序规则阵列. 其中, 通过可溶性模板策略制备的无序多孔结构具有约140°的水滴接触角和接**于0°的油滴接触角, 可用于油水分离, 并且在**酸和**碱的环境中浸泡后表现出稳定的润湿性. 即使在严重磨损后, 带有多孔结构的表面仍可保持约130°的水滴接触角和约4°的油滴接触角. 此外, 该策略显示出优异的可重复使用性能. 通过在同一个金属玻璃表面上重构三次多孔结构, 发现每次重构的多孔结构的润湿性没有显著变化. 本文的研究成果为制备多级孔结构及功能表面提供了一种简便可控的方法.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duan C, Li F, **ao J, et al. Rapid room-temperature synthesis of hierarchical porous zeolitic imidazolate frameworks with high space-time yield. Sci China Mater, 2017, 60: 1205–1214

    Article  CAS  Google Scholar 

  2. Pfriem N, Hintermeier PH, Eckstein S, et al. Role of the ionic environment in enhancing the activity of reacting molecules in zeolite pores. Science, 2021, 372: 952–957

    Article  CAS  Google Scholar 

  3. Chaoui N, Trunk M, Dawson R, et al. Trends and challenges for microporous polymers. Chem Soc Rev, 2017, 46: 3302–3321

    Article  CAS  Google Scholar 

  4. Aguila B, Sun Q, Perman JA, et al. Efficient mercury capture using functionalized porous organic polymer. Adv Mater, 2017, 29: 1700665

    Article  CAS  Google Scholar 

  5. Duan C, Liang K, Lin J, et al. Application of hierarchically porous metal-organic frameworks in heterogeneous catalysis: A review. Sci China Mater, 2022, 65: 298–320

    Article  CAS  Google Scholar 

  6. Zhou HC“”, Kitagawa S. Metal-organic frameworks (MOFs). Chem Soc Rev, 2014, 43: 5415–5418

    Article  CAS  Google Scholar 

  7. He J, Xu J, Yin J, et al. Recent advances in luminescent metal-organic frameworks for chemical sensors. Sci China Mater, 2019, 62: 1655–1678

    Article  CAS  Google Scholar 

  8. Kasianowicz JJ, Robertson JWF, Chan ER, et al. Nanoscopic porous sensors. Annu Rev Anal Chem, 2008, 1: 737–766

    Article  CAS  Google Scholar 

  9. Choi HK, Lee A, Park M, et al. Hierarchical porous film with layer-by-layer assembly of 2D copper nanosheets for ultimate electromagnetic interference shielding. ACS Nano, 2021, 15: 829–839

    Article  CAS  Google Scholar 

  10. Lin Z, Liu J, Peng W, et al. Highly stable 3D Ti3C2Tx MXene-based foam architectures toward high-performance terahertz radiation shielding. ACS Nano, 2020, 14: 2109–2117

    Article  CAS  Google Scholar 

  11. Wang S, Xu M, Peng T, et al. Porous hypercrosslinked polymer-TiO2-graphene composite photocatalysts for visible-light-driven CO2 conversion. Nat Commun, 2019, 10: 676

    Article  CAS  Google Scholar 

  12. Ma G, Yan X, Li Y, et al. Ordered nanoporous silica with periodic 30–60 nm pores as an effective support for gold nanoparticle catalysts with enhanced lifetime. J Am Chem Soc, 2010, 132: 9596–9597

    Article  CAS  Google Scholar 

  13. Yang H, Wang C, Hu F, et al. Atomic-scale Pt clusters decorated on porous α-Ni(OH)2 nanowires as highly efficient electrocatalyst for hydrogen evolution reaction. Sci China Mater, 2017, 60: 1121–1128

    Article  CAS  Google Scholar 

  14. Zhang X, Lu W, Da J, et al. Porous platinum nanowire arrays for direct ethanolfuel cell applications. Chem Commun, 2009, 195–197

  15. Liu L, Pippel E, Scholz R, et al. Nanoporous Pt-Co alloy nanowires: Fabrication, characterization, and electrocatalytic properties. Nano Lett, 2009, 9: 4352–4358

    Article  CAS  Google Scholar 

  16. Burton M, Selvam A, Lawrie-Ashton J, et al. Three-dimensional nanostructured palladium with single diamond architecture for enhanced catalytic activity. ACS Appl Mater Interfaces, 2018, 10: 37087–37094

    Article  CAS  Google Scholar 

  17. Akbar S, Elliott JM, Rittman M, et al. Facile production of ordered 3D platinum nanowire networks with “single diamond” bicontinuous cubic morphology. Adv Mater, 2013, 25: 1160–1164

    Article  CAS  Google Scholar 

  18. Klement W, Willens RH, Duwez P. Non-crystalline structure in solidified gold-silicon alloys. Nature, 1960, 187: 869–870

    Article  CAS  Google Scholar 

  19. Wang WH, Dong C, Shek CH. Bulk metallic glasses. Mater Sci Eng-R-Rep, 2004, 44: 45–89

    Article  CAS  Google Scholar 

  20. Inoue A, Takeuchi A. Recent development and application products of bulk glassy alloys. Acta Mater, 2011, 59: 2243–2267

    Article  CAS  Google Scholar 

  21. Ma J, Yang C, Liu X, et al. Fast surface dynamics enabled cold joining of metallic glasses. Sci Adv, 2019, 5: eaax7256

    Article  CAS  Google Scholar 

  22. Li X, Wei D, Zhang JY, et al. Ultrasonic plasticity of metallic glass near room temperature. Appl Mater Today, 2020, 21: 100866

    Article  Google Scholar 

  23. Zhang L, Qiu L, Zhu Q, et al. Insight into efficient degradation of 3,5-dichlorosalicylic acid by Fe−Si−B amorphous ribbon under neutral condition. Appl Catal B-Environ, 2021, 294: 120258

    Article  CAS  Google Scholar 

  24. Fu J, Yang J, Wu K, et al. Metallic glue for designing composite materials with tailorable properties. Mater Horiz, 2021, 8: 1690–1699

    Article  CAS  Google Scholar 

  25. Huang Z, Fu J, Li X, et al. Ultrasonic-assisted rapid cold welding of bulk metallic glasses. Sci China Mater, 2022, 65: 255–262

    Article  CAS  Google Scholar 

  26. Li H, Li Z, Yang J, et al. Interface design enabled manufacture of giant metallic glasses. Sci China Mater, 2021, 64: 964–972

    Article  CAS  Google Scholar 

  27. Kumar G, Tang HX, Schroers J. Nanomoulding with amorphous metals. Nature, 2009, 457: 868–872

    Article  CAS  Google Scholar 

  28. Yan Y, Wang C, Huang Z, et al. Highly efficient and robust catalysts for the hydrogen evolution reaction by surface nano engineering of metallic glass. J Mater Chem A, 2021, 9: 5415–5424

    Article  CAS  Google Scholar 

  29. Ma J, Yi J, Zhao DQ, et al. Large size metallic glass gratings by embossing. J Appl Phys, 2012, 112: 064505

    Article  CAS  Google Scholar 

  30. Chu JP, Wijaya H, Wu CW, et al. Nanoimprint of gratings on a bulk metallic glass. Appl Phys Lett, 2007, 90: 034101

    Article  CAS  Google Scholar 

  31. Fu G, Tor SB, Loh NH, et al. Fabrication of robust tooling for mass production of polymeric microfluidic devices. J Micromech Microeng, 2010, 20: 085019

    Article  CAS  Google Scholar 

  32. Schroers J. Processing of bulk metallic glass. Adv Mater, 2010, 22: 1566–1597

    Article  CAS  Google Scholar 

  33. Brothers AH, Dunand DC. Amorphous metal foams. Scripta Mater, 2006, 54: 513–520

    Article  CAS  Google Scholar 

  34. Qiu HJ, Wang JQ, Liu P, et al. Hierarchical nanoporous metal/metal-oxide composite by dealloying metallic glass for high-performance energy storage. Corrosion Sci, 2015, 96: 196–202

    Article  CAS  Google Scholar 

  35. ** Y, Li R, Zuo L, et al. Correlation between dealloying conditions and coarsening behaviors of nanoporous silver produced by chemical dealloying of Ca−Ag metallic glass. J Alloys Compd, 2017, 695: 1600–1609

    Article  CAS  Google Scholar 

  36. Meng M, Li R, Zuo L, et al. Fabrication of hierarchical porous metallic glasses decorated with Cu nanoparticles as integrated electrodes for high-performance non-enzymatic glucose sensing. Scripta Mater, 2021, 199: 113884

    Article  CAS  Google Scholar 

  37. Luo X, Meng M, Li R, et al. Honeycomb-like porous metallic glasses decorated by Cu nanoparticles formed by one-pot electrochemically galvanostatic etching. Mater Des, 2020, 196: 109109

    Article  CAS  Google Scholar 

  38. Schroers J, Veazey C, Johnson WL. Amorphous metallic foam. Appl Phys Lett, 2003, 82: 370–372

    Article  CAS  Google Scholar 

  39. Wada T, Inoue A. Formation of porous Pd-based bulk glassy alloys by a high hydrogen pressure melting-water quenching method and their mechanical properties. Mater Trans, 2004, 45: 2761–2765

    Article  CAS  Google Scholar 

  40. Brothers AH, Dunand DC. Plasticity and damage in cellular amorphous metals. Acta Mater, 2005, 53: 4427–4440

    Article  CAS  Google Scholar 

  41. Brothers AH, Scheunemann R, DeFouw JD, et al. Processing and structure of open-celled amorphous metal foams. Scripta Mater, 2005, 52: 335–339

    Article  CAS  Google Scholar 

  42. Lee MH, Sordelet DJ. Synthesis of bulk metallic glass foam by powder extrusion with a fugitive second phase. Appl Phys Lett, 2006, 89: 021921

    Article  CAS  Google Scholar 

  43. Lee MH, Sordelet DJ. Nanoporous metallic glass with high surface area. Scripta Mater, 2006, 55: 947–950

    Article  CAS  Google Scholar 

  44. Zhou C, Datye A, Chen Z, et al. Atomic imprinting in the absence of an intrinsic length scale. APL Mater, 2020, 8: 111104

    Article  CAS  Google Scholar 

  45. Li R, Chen Z, Datye A, et al. Atomic imprinting into metallic glasses. Commun Phys, 2018, 1: 75

    Article  CAS  Google Scholar 

  46. Hasan M, Schroers J, Kumar G. Functionalization of metallic glasses through hierarchical patterning. Nano Lett, 2015, 15: 963–968

    Article  CAS  Google Scholar 

  47. Mukherjee S, Sekol RC, Carmo M, et al. Tunable hierarchical metallic-glass nanostructures. Adv Funct Mater, 2013, 23: 2708–2713

    Article  CAS  Google Scholar 

  48. Liu Z, Schroers J. General nanomoulding with bulk metallic glasses. Nanotechnology, 2015, 26: 145301

    Article  CAS  Google Scholar 

  49. Liu X, Shao Y, Li JF, et al. Large-area and uniform amorphous metallic nanowire arrays prepared by die nanoimprinting. J Alloys Compd, 2014, 605: 7–11

    Article  CAS  Google Scholar 

  50. Gong P, Kou H, Wang S, et al. Research on thermoplastic formability and nanomoulding mechanism of lightweight Ti-based bulk metallic glasses. J Alloys Compd, 2019, 801: 267–276

    Article  CAS  Google Scholar 

  51. Sarac B, Bera S, Balakin S, et al. Hierarchical surface patterning of Ni- and Be-free Ti- and Zr-based bulk metallic glasses by thermoplastic net-sha**. Mater Sci Eng-C, 2017, 73: 398–405

    Article  CAS  Google Scholar 

  52. Wenzel RN. Resistance of solid surfaces to wetting by water. Ind Eng Chem, 1936, 28: 988–994

    Article  CAS  Google Scholar 

  53. Cassie ABD, Baxter S. Wettability of porous surfaces. Trans Faraday Soc, 1944, 40: 546–551

    Article  CAS  Google Scholar 

  54. Wang D, Sun Q, Hokkanen MJ, et al. Design of robust superhydrophobic surfaces. Nature, 2020, 582: 55–59

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Basic and Applied Research Program of Guangdong Province, China (2019B030302010), the National Natural Science Foundation of China (52122105, 51871157, and 51971150), and the National Key Research and Development Program of China (2018YFA0703604). The authors also thank the assistance on microscope observation received from the Electron Microscope Center of Shenzhen University.

Author information

Authors and Affiliations

Authors

Contributions

Fu J and Ma J conceived the idea. Ma J, Li Z, Ruan W, Ren S, Zhang Z and Liang X supervised the work. Fu J and Liu Z carried out the experiments, and Li Z, Li X, and Sun F designed the experimental setup. Wen W performed the XRD and DSC. Huang J prepared the raw material. Fu J and Li L performed the TEM. Fu J and Ma J wrote the manuscript. All authors contributed to the discussion and analyzed the results.

Corresponding author

Correspondence to Jiang Ma  (马将).

Additional information

Supplementary information

Supporting data are available in the online version of the paper.

Conflict of interest

The authors declare that they have no conflict of interest.

Jianan Fu received his BSc degree from Jiangxi Agricultural University in 2019 and Master degree in mechanical engineering from Shenzhen University in 2022. He will pursue a PhD degree at the Southern University of Science and Technology. His research includes the formation of micro/nano-structure via the thermoplastic forming process and the application of metallic glasses.

Jiang Ma received his BSc degree in materials science and engineering from the Southeast University in 2009 and PhD degree from the Institute of Physics, Chinese Academy of Sciences (CAS), Bei**g, China, in 2014, honored with the Outstanding PhD student Award (Top 1%) and the Institute Director Award (Top 5%). He is currently a professor at the College of Mechatronics and Control Engineering, Shenzhen University, China, and received the Outstanding Teacher Award of Shenzhen, in 2018. His research includes the formation, functional application and high frequency dynamic loading behavior of metallic glasses.

Supplementary information for

Manufacture of porous metallic glass using dissolvable templates

Supplementary material, approximately 105 KB.

Supplementary material, approximately 890 KB.

Supplementary material, approximately 7.42 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Li, Z., Liu, Z. et al. Manufacture of porous metallic glass using dissolvable templates. Sci. China Mater. 65, 2833–2841 (2022). https://doi.org/10.1007/s40843-022-2191-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-022-2191-9

Keywords

Navigation