Log in

Anion exchange membranes based on long side-chain quaternary ammonium-functionalized poly(arylene piperidinium)s for vanadium redox flow batteries

长侧链季铵基团功能化聚(亚芳基-哌啶鎓盐)阴离子交换膜的制备及在全钒液流电池中的应用

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

A new series of poly(arylene piperidinium)-based anion exchange membranes (AEMs) are proposed for vanadium redox flow batteries (VRFBs). The AEMs are fabricated via the Menshutkin reaction between poly(arylene piperidine) without ether bonds in the backbone and various quaternizing agents, including iodomethane, 1-bromopentane, and (5-bromopentyl)-trimethylammonium bromide. The properties of the AEMs are investigated in terms of sulfuric acid do** content, swelling, vanadium permeability, ion selectivity, area-specific resistance, mechanical properties, VRFB performance, and cyclic testing. Particularly, a method of measuring the H+ permeability of the AEM is developed. It demonstrates that the poly(p-terphenyl-N-methylpiperidine)-quaternary ammonium (PTP-QA) membrane with a QA cation-tethered alkyl chain exhibits high H+ permeability, resulting in low area resistance. Combined with its low vanadium permeance, the PTP-QA membrane achieves nearly 370 times higher ion selectivity than Nafion 115. The VRFB based on PTP-QA-based AEM displays high Coulombic efficiencies above 99% at current densities of 80–160 mA cm−2. The higher energy efficiency of 89.8% is achieved at 100 mA cm−2 (vs. 73.6% for Nafion 115). Meanwhile, the PTP-QA-based AEM shows good cycling stability and capacity retention, proving great potential as the ion exchange membrane for VRFB applications.

摘要

离子选择性是全钒氧化还原液流电池(VRFBs)用膜材料的重要性能指标. 本文以主链中没有醚键的聚(亚芳基哌啶-哌啶)(PTP)为基体材料, 通过其和碘甲烷、1-溴戊烷和(5-溴戊基)-三甲基溴化铵间的门秀金(Menshutkin)反应, 使PTP中哌啶基团季铵化, 合成了不同侧链接枝的聚(亚芳基-哌啶鎓盐)型阴离子交换膜(AEMs). 研究了AEMs的硫酸掺杂含量、溶胀性、钒离子渗透性、离子选择性、面电阻、机械性能、全钒液流电池性能和循环寿命. 同时提出了一种测量AEMs氢离子透过率的方法, 结果表明, 氢离子在AEMs中也能有效传导. 长侧链季铵盐接枝的膜材料(PTP-QA)具有最高的H+透过率, 同时具有较低的面电阻和良好的阻钒性能. PTP-QA膜的离子选择性(电导率与钒离子透过率的比值)是Nafion 115离子选择性的370倍. 由PTP-QA膜组装的VRFB, 在80–160 mA cm−2电流密度下的库伦效率高于99%; 在100 mA cm−2下的能量效率高达89.8% (Nafion 115组装的VRFB的能量效率为73.6%); 同时, 该VRFB也表现出良好的循环稳定性和容量保持率. 研究表明聚(亚芳基-哌啶鎓盐)型AEMs在VRFB中具有潜在的应用价值.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Soloveichik GL. Flow batteries: Current status and trends. Chem Rev, 2015, 115: 11533–11558

    Article  CAS  Google Scholar 

  2. Minke C, Turek T. Materials, system designs and modelling approaches in techno-economic assessment of all-vanadium redox flow batteries—A review. J Power Sources, 2018, 376: 66–81

    Article  CAS  Google Scholar 

  3. Shi Y, Eze C, **ong B, et al. Recent development of membrane for vanadium redox flow battery applications: A review. Appl Energy, 2019, 238: 202–224

    Article  CAS  Google Scholar 

  4. Li Z, Lu YC. Material design of aqueous redox flow batteries: Fundamental challenges and mitigation strategies. Adv Mater, 2020, 32: 2002132

    Article  CAS  Google Scholar 

  5. Prifti H, Parasuraman A, Winardi S, et al. Membranes for redox flow battery applications. Membranes, 2012, 2: 275–306

    Article  CAS  Google Scholar 

  6. Zeng L, Zhao TS, Wei L, et al. Anion exchange membranes for aqueous acid-based redox flow batteries: Current status and challenges. Appl Energy, 2019, 233–234: 622–643

    Article  Google Scholar 

  7. Saal A, Hagemann T, Schubert US. Polymers for battery applications—Active materials, membranes, and binders. Adv Energy Mater, 2020, 2001984

  8. Sun C, Chen J, Zhang H, et al. Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery. J Power Sources, 2010, 195: 890–897

    Article  CAS  Google Scholar 

  9. Teng X, Dai J, Su J, et al. A high performance polytetrafluoroethene/Nafion composite membrane for vanadium redox flow battery application. J Power Sources, 2013, 240: 131–139

    Article  CAS  Google Scholar 

  10. Austing JG, Kirchner CN, Komsiyska L, et al. Layer-by-layer modification of Nafion membranes for increased life-time and efficiency of vanadium/air redox flow batteries. J Membr Sci, 2016, 510: 259–269

    Article  Google Scholar 

  11. Jiang B, Wu L, Yu L, et al. A comparative study of Nafion series membranes for vanadium redox flow batteries. J Membr Sci, 2016, 510: 18–26

    Article  CAS  Google Scholar 

  12. Jiang B, Yu L, Wu L, et al. Insights into the impact of the Nafion membrane pretreatment process on vanadium flow battery performance. ACS Appl Mater Interfaces, 2016, 8: 12228–12238

    Article  CAS  Google Scholar 

  13. Li Z, Liu L, Yu L, et al. Characterization of sulfonated poly(ether ether ketone)/poly(vinylidene fluoride-co-hexafluoropropylene) composite membrane for vanadium redox flow battery application. J Power Sources, 2014, 272: 427–435

    Article  CAS  Google Scholar 

  14. Yuan Z, Li X, Hu J, et al. Degradation mechanism of sulfonated poly(ether ether ketone) (SPEEK) ion exchange membranes under vanadium flow battery medium. Phys Chem Chem Phys, 2014, 16: 19841–19847

    Article  CAS  Google Scholar 

  15. Yu L, Lin F, **ao W, et al. Achieving efficient and inexpensive vanadium flow battery by combining CexZr1−xO2 electrocatalyst and hydrocarbon membrane. Chem Eng J, 2019, 356: 622–631

    Article  CAS  Google Scholar 

  16. Skyllas-Kazacos M, Kazacos M. State of charge monitoring methods for vanadium redox flow battery control. J Power Sources, 2011, 196: 8822–8827

    Article  CAS  Google Scholar 

  17. Shin DW, Guiver MD, Lee YM. Hydrocarbon-based polymer electrolyte membranes: Importance of morphology on ion transport and membrane stability. Chem Rev, 2017, 117: 4759–4805

    Article  CAS  Google Scholar 

  18. Chen D, Hickner MA. V5+ degradation of sulfonated Radel membranes for vanadium redox flow batteries. Phys Chem Chem Phys, 2013, 15: 11299–11305

    Article  CAS  Google Scholar 

  19. Jung MSJ, Parrondo J, Arges CG, et al. Polysulfone-based anion exchange membranes demonstrate excellent chemical stability and performance for the all-vanadium redox flow battery. J Mater Chem A, 2013, 1: 10458–10464

    Article  CAS  Google Scholar 

  20. Zhang D, Yan X, He G, et al. An integrally thin skinned asymmetric architecture design for advanced anion exchange membranes for vanadium flow batteries. J Mater Chem A, 2015, 3: 16948–16952

    Article  CAS  Google Scholar 

  21. Ren J, Dong Y, Dai J, et al. A novel chloromethylated/quaternized poly(sulfone)/poly(vinylidene fluoride) anion exchange membrane with ultra-low vanadium permeability for all vanadium redox flow battery. J Membr Sci, 2017, 544: 186–194

    Article  CAS  Google Scholar 

  22. Chen D, Hickner MA, Agar E, et al. Optimized anion exchange membranes for vanadium redox flow batteries. ACS Appl Mater Interfaces, 2013, 5: 7559–7566

    Article  CAS  Google Scholar 

  23. Mai Z, Zhang H, Zhang H, et al. Anion-conductive membranes with ultralow vanadium permeability and excellent performance in vanadium flow batteries. ChemSusChem, 2013, 6: 328–335

    Article  CAS  Google Scholar 

  24. Lu D, Wen L, Nie F, et al. Synthesis and investigation of imidazolium functionalized poly(arylene ether sulfone)s as anion exchange membranes for all-vanadium redox flow batteries. RSC Adv, 2016, 6: 6029–6037

    Article  CAS  Google Scholar 

  25. Cha MS, Jeong HY, Shin HY, et al. Crosslinked anion exchange membranes with primary diamine-based crosslinkers for vanadium redox flow battery application. J Power Sources, 2017, 363: 78–86

    Article  CAS  Google Scholar 

  26. Zhang S, Zhang B, Zhao G, et al. Anion exchange membranes from brominated poly(aryl ether ketone) containing 3,5-dimethyl phthalazinone moieties for vanadium redox flow batteries. J Mater Chem A, 2014, 2: 3083–3091

    Article  CAS  Google Scholar 

  27. Zhang B, Wang Q, Guan S, et al. High performance membranes based on new 2-adamantane containing poly(aryl ether ketone) for vanadium redox flow battery applications. J Power Sources, 2018, 399: 18–25

    Article  CAS  Google Scholar 

  28. Yun S, Parrondo J, Ramani V. Composite anion exchange membranes based on quaternized cardo-poly(etherketone) and quaternized inorganic fillers for vanadium redox flow battery applications. Int J Hydrogen Energy, 2016, 41: 10766–10775

    Article  CAS  Google Scholar 

  29. Chen D, Hickner MA, Agar E, et al. Selective anion exchange membranes for high Coulombic efficiency vanadium redox flow batteries. Electrochem Commun, 2013, 26: 37–40

    Article  CAS  Google Scholar 

  30. Chen Y, Lin Q, Zheng Y, et al. Densely quaternized anion exchange membranes synthesized from Ullmann coupling extension of ionic segments for vanadium redox flow batteries. Sci China Mater, 2019, 62: 211–224

    Article  CAS  Google Scholar 

  31. Chen Y, Li Y, Wang B, et al. Fluorinated poly(fluorenyl ether)s with linear multi-cationic side chains for vanadium redox flow batteries. Sci China Mater, 2021, 64: 349–361

    Article  CAS  Google Scholar 

  32. Park EJ, Maurya S, Martinez U, et al. Quaternized poly(arylene ether benzonitrile) membranes for vanadium redox flow batteries. J Membr Sci, 2021, 617: 118565

    Article  CAS  Google Scholar 

  33. Fang J, Xu H, Wei X, et al. Preparation and characterization of quaternized poly (2,2,2-trifluoroethyl methacrylate-co-N-vinylimidazole) membrane for vanadium redox flow battery. Polym Adv Technol, 2013, 24: 168–173

    Article  CAS  Google Scholar 

  34. Hwang CW, Park HM, Oh CM, et al. Synthesis and characterization of vinylimidazole-co-trifluoroethylmethacrylate-co-divinylbenzene anion-exchange membrane for all-vanadium redox flow battery. J Membr Sci, 2014, 468: 98–106

    Article  CAS  Google Scholar 

  35. Roh SH, Lim MH, Sadhasivam T, et al. Investigation on physico-chemical and electrochemical performance of poly(phenylene oxide)-based anion exchange membrane for vanadium redox flow battery systems. Electrochim Acta, 2019, 325: 134944

    Article  CAS  Google Scholar 

  36. Chu F, Chu X, Lv T, et al. Amphoteric membranes based on sulfonated polyether ether ketone and imidazolium-functionalized polyphenylene oxide for vanadium redox flow battery applications. ChemElectroChem, 2019, 6: 5041–5050

    Article  CAS  Google Scholar 

  37. Cho H, Krieg HM, Kerres JA. Performances of anion-exchange blend membranes on vanadium redox flow batteries. Membranes, 2019, 9: 31

    Article  Google Scholar 

  38. Ahn Y, Kim D. Anion exchange membrane prepared from imidazolium grafted poly(arylene ether ketone) with enhanced durability for vanadium redox flow battery. J Ind Eng Chem, 2019, 71: 361–368

    Article  CAS  Google Scholar 

  39. Maurya S, Shin SH, Kim Y, et al. A review on recent developments of anion exchange membranes for fuel cells and redox flow batteries. RSC Adv, 2015, 5: 37206–37230

    Article  CAS  Google Scholar 

  40. Yuan Z, Li X, Zhao Y, et al. Mechanism of polysulfone-based anion exchange membranes degradation in vanadium flow battery. ACS Appl Mater Interfaces, 2015, 7: 19446–19454

    Article  CAS  Google Scholar 

  41. Merle G, Wessling M, Nijmeijer K. Anion exchange membranes for alkaline fuel cells: A review. J Membr Sci, 2011, 377: 1–35

    Article  CAS  Google Scholar 

  42. Hwang GJ, Kim SW, In DM, et al. Application of the commercial ion exchange membranes in the all-vanadium redox flow battery. J Ind Eng Chem, 2018, 60: 360–365

    Article  CAS  Google Scholar 

  43. Shen W, Fu X, Yao T. Physical Chemistry (fifth ed., Volume II) (in Chinese), vol. 1, Bei**g: Higher Education Press, 2006.

    Google Scholar 

  44. Park EJ, Kim YS. Quaternized aryl ether-free polyaromatics for alkaline membrane fuel cells: Synthesis, properties, and performance—A topical review. J Mater Chem A, 2018, 6: 15456–15477

    Article  CAS  Google Scholar 

  45. Li H, Kraglund MR, Reumert AK, et al. Poly(vinyl benzyl methylpyrrolidinium) hydroxide derived anion exchange membranes for water electrolysis. J Mater Chem A, 2019, 7: 17914–17922

    Article  CAS  Google Scholar 

  46. Abdiani M, Abouzari-Lotf E, Ting TM, et al. Novel polyolefin based alkaline polymer electrolyte membrane for vanadium redox flow batteries. J Power Sources, 2019, 424: 245–253

    Article  CAS  Google Scholar 

  47. Lee Y, Kim S, Maljusch A, et al. Polybenzimidazole membranes functionalised with 1-methyl-2-mesitylbenzimidazolium ions via a hexyl linker for use in vanadium flow batteries. Polymer, 2019, 174: 210–217

    Article  CAS  Google Scholar 

  48. Ren X, Zhao L, Che X, et al. Quaternary ammonium groups grafted polybenzimidazole membranes for vanadium redox flow battery applications. J Power Sources, 2020, 457: 228037

    Article  CAS  Google Scholar 

  49. Olsson JS, Pham TH, Jannasch P. Poly(arylene piperidinium) hydroxide ion exchange membranes: Synthesis, alkaline stability, and conductivity. Adv Funct Mater, 2018, 28: 1702758

    Article  Google Scholar 

  50. Peng H, Li Q, Hu M, et al. Alkaline polymer electrolyte fuel cells stably working at 80°C. J Power Sources, 2018, 390: 165–167

    Article  CAS  Google Scholar 

  51. Wang J, Zhao Y, Setzler BP, et al. Poly(aryl piperidinium) membranes and ionomers for hydroxide exchange membrane fuel cells. Nat Energy, 2019, 4: 392–398

    Article  CAS  Google Scholar 

  52. Noh S, Jeon JY, Adhikari S, et al. Molecular engineering of hydroxide conducting polymers for anion exchange membranes in electrochemical energy conversion technology. Acc Chem Res, 2019, 52: 2745–2755

    Article  CAS  Google Scholar 

  53. Wang T, Jeon JY, Han J, et al. Poly(terphenylene) anion exchange membranes with high conductivity and low vanadium permeability for vanadium redox flow batteries (VRFBs). J Membr Sci, 2020, 598:117665

    Article  CAS  Google Scholar 

  54. Yan X, Zhang H, Hu Z, et al. Amphoteric-side-chain-functionalized “ether-free” poly(arylene piperidinium) membrane for advanced redox flow battery. ACS Appl Mater Interfaces, 2019, 11: 44315–44324

    Article  CAS  Google Scholar 

  55. Yang J, Che Q, Zhou L, et al. Studies of a high temperature proton exchange membrane based on incorporating an ionic liquid cation 1-butyl-3-methylimidazolium into a Nafion matrix. Electrochim Acta, 2011, 56: 5940–5946

    Article  CAS  Google Scholar 

  56. Klumpp DA, Garza M, Jones A, et al. Synthesis of aryl-substituted piperidines by superacid activation of piperidones. J Org Chem, 1999, 64: 6702–6705

    Article  CAS  Google Scholar 

  57. Jang JK, Kim TH, Yoon SJ, et al. Highly proton conductive, dense polybenzimidazole membranes with low permeability to vanadium and enhanced H2SO4 absorption capability for use in vanadium redox flow batteries. J Mater Chem A, 2016, 4: 14342–14355

    Article  CAS  Google Scholar 

  58. Jung M, Lee W, Noh C, et al. Blending polybenzimidazole with an anion exchange polymer increases the efficiency of vanadium redox flow batteries. J Membr Sci, 2019, 580: 110–116

    Article  CAS  Google Scholar 

  59. Che X, Zhao H, Ren X, et al. Porous polybenzimidazole membranes with high ion selectivity for the vanadium redox flow battery. J Membr Sci, 2020, 611: 118359

    Article  CAS  Google Scholar 

  60. Guzmán-Gutiérrez MT, Nieto DR, Fomine S, et al. Dramatic enhancement of superacid-catalyzed polyhydroxyalkylation reactions. Macromolecules, 2011, 44: 194–202

    Article  Google Scholar 

  61. Bai H, Peng H, ** as high temperature polymer electrolyte membrane for durable, high-performance fuel cells. J Power Sources, 2019, 443: 227219

    Article  CAS  Google Scholar 

  62. Ye R, Henkensmeier D, Yoon SJ, et al. Redox flow batteries for energy storage: A technology review. J Electrochem En Conv Stor, 2018, 15: 010801

    Article  Google Scholar 

  63. Kimura N, Matsumoto H, Konosu Y, et al. Membrane potential across anion-exchange membranes in acidic solution system. J Colloid Interface Sci, 2005, 286: 288–293

    Article  CAS  Google Scholar 

  64. Seo SJ, Kim BC, Sung KW, et al. Electrochemical properties of pore-filled anion exchange membranes and their ionic transport phenomena for vanadium redox flow battery applications. J Membr Sci, 2013, 428: 17–23

    Article  CAS  Google Scholar 

  65. Münchinger A, Kreuer KD. Selective ion transport through hydrated cation and anion exchange membranes I. The effect of specific interactions. J Membr Sci, 2019, 592: 117372

    Article  Google Scholar 

  66. Yang J, Li Q, Jensen JO, et al. Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange membrane fuel cells. J Power Sources, 2012, 205: 114–121

    Article  CAS  Google Scholar 

  67. Yang J, Wang J, Liu C, et al. Influences of the structure of imidazolium pendants on the properties of polysulfone-based high temperature proton conducting membranes. J Membr Sci, 2015, 493: 80–87

    Article  CAS  Google Scholar 

  68. Yang J, Wang Y, Yang G, et al. New anhydrous proton exchange membranes based on fluoropolymers blend imidazolium poly(aromatic ether ketone)s for high temperature polymer electrolyte fuel cells. Int J Hydrogen Energy, 2018, 43: 8464–8473

    Article  CAS  Google Scholar 

  69. Lorrain Y, Pourcelly G, Gavach C. Influence of cations on the proton leakage through anion-exchange membranes. J Membr Sci, 1996, 110: 181–190

    Article  CAS  Google Scholar 

  70. Luo J, Wu C, Xu T, et al. Diffusion dialysis-concept, principle and applications. J Membr Sci, 2011, 366: 1–16

    Article  CAS  Google Scholar 

  71. Noh C, Jung M, Henkensmeier D, et al. Vanadium redox flow batteries using meta-polybenzimidazole-based membranes of different thicknesses. ACS Appl Mater Interfaces, 2017, 9: 36799–36809

    Article  CAS  Google Scholar 

  72. Chae IS, Luo T, Moon GH, et al. Ultra-high proton/vanadium selectivity for hydrophobic polymer membranes with intrinsic nanopores for redox flow battery. Adv Energy Mater, 2016, 6: 1600517

    Article  Google Scholar 

  73. Liu Y, Yu L, Liu L, et al. Tailoring the vanadium/proton ratio of electrolytes to boost efficiency and stability of vanadium flow batteries over a wide temperature range. Appl Energy, 2021, 301: 117454

    Article  CAS  Google Scholar 

  74. **ng Y, Geng K, Chu X, et al. Chemically stable anion exchange membranes based on C2-protected imidazolium cations for vanadium flow battery. J Membr Sci, 2021, 618: 118696

    Article  CAS  Google Scholar 

  75. Zhao Y, Zhang H, **ao C, et al. Highly selective charged porous membranes with improved ion conductivity. Nano Energy, 2018, 48: 353–360

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51603031), the Fundamental Research Funds for the Central Universities of China (N2005026), Liaoning Provincial Natural Science Foundation of China (20180550871 and 2020-MS-087), and the Innovation Fund Denmark (DanFlow). The authors thank Prof. Jianguo Liu of the Chinese Academy of Sciences for the valuable assistance in the vanadium redox flow battery testing.

Author information

Authors and Affiliations

Authors

Contributions

Yang J and Che X designed the experiments; Che X, Tang W, and Dong J performed the experiments; Yang J, Che X, and Aili D wrote the paper. All authors contributed to the interpretation of data and scientific discussion.

Corresponding authors

Correspondence to David Aili or **gshuai Yang  (杨景帅).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Experimental details and supporting data are available in the online version of the paper.

Xuefu Che is currently a master’s student at the Department of Chemistry, College of Sciences, Northeastern University (NEU), China. His research interest focuses on the synthesis of new polymers for high-temperature proton exchange membrane fuel cells and vanadium redox flow batteries.

Weiqin Tang is currently a master’s student at the Department of Chemistry, College of Sciences, NEU, China. Her research interest focuses on the preparation and performance of basic groups functionalized membranes for the vanadium redox flow battery.

David Aili is a senior researcher at the Department of Energy Conversion and Storage at the Technical University of Denmark (DTU Energy). He has an educational background in organic chemistry and obtained his PhD degree from DTU in 2011. His field of research spans from fundamental chemistry and polymer science to catalysis and electrochemical conversion in the context of fuel cells, flow batteries, and electrosynthesis of fuels and chemicals.

**gshuai Yang is an associate professor at NEU in China. He received his BS degree in applied chemistry and PhD degree in physical chemistry from NEU in 2007 and 2013, respectively. From 2010 to 2012, he studied at the Technical University of Denmark as a guest PhD. His fields of research include polymer electrolyte membranes and their applications in electrochemical systems (fuel cell, flow battery, water electrolyzer, supercapacitor, et al.).

Supporting Information

40843_2021_1786_MOESM1_ESM.pdf

Anion exchange membranes based on long side-chain quaternary ammonium functionalized poly(arylene piperidinium)s for vanadium redox flow batteries

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, X., Tang, W., Dong, J. et al. Anion exchange membranes based on long side-chain quaternary ammonium-functionalized poly(arylene piperidinium)s for vanadium redox flow batteries. Sci. China Mater. 65, 683–694 (2022). https://doi.org/10.1007/s40843-021-1786-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-021-1786-0

Keywords

Navigation