Log in

Reticular chemistry in electrochemical carbon dioxide reduction

框架化学在电化学还原二氧化碳中的应用

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

Electrochemical CO2 reduction (ECR) represents a promising strategy for utilizing CO2, an industrial waste, as an abundant and cheap carbon source for organic synthesis as well as storing intermittent renewable electricity from renewable sources. Efficient electrocatalysts allowing CO2 to be reduced selectively and actively are crucial since the ECR is a complex and sluggish process producing a variety of products. Metal-organic frameworks (MOFs) and covalentorganic frameworks (COFs) have emerged as versatile materials applicable in many fields due to their unique properties including high surface areas and tunable pore channels. Besides, the emerging reticular chemistry makes tuning their features on the atomic/molecular levels possible, thereby lending credence to the prospect of their utilizations. Herein, an overview of recent progress in employing framework material-based catalysts, including MOFs, COFs and their derivatives, for ECR is provided. The pertinent challenges, future trends, and opportunities associated with those systems are also discussed.

摘要

利用电化学方法将大气中的二氧化碳还原成具有工业价值的原材料被认为是缓解温室效应、 实现碳中和的重要手段. 然而, 电化学还原二氧化碳的过程涉及多种复杂的反应, 寻找和开发高效的电化学催化剂被认为是推动该领域发展的工作重点. **年来, 金属有机框架结构和共价有机框架结构因其超高的比表面积、 可调控的孔道结构等特征被广泛应用在各个领域. 同时, 随之发展的框架化学为从原子/分子级设计具有特定功能的有机框架结构提供了理论基础. 本文综述了**年来有机框架结构及其衍生材料在电化学二氧化碳还原方向的应用, 并展望了框架化学在该领域中的挑战、机遇以及发展方向.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future. Nature, 2012, 488: 294–303

    CAS  Google Scholar 

  2. Mac Dowell N, Fennell PS, Shah N, et al. The role of CO2 capture and utilization in mitigating climate change. Nat Clim Change, 2017, 7: 243–249

    Google Scholar 

  3. Leitner W, Quadrelli EA, Schlögl R. Harvesting renewable energy with chemistry. Green Chem, 2017, 19: 2307–2308

    CAS  Google Scholar 

  4. Drechsler M, Egerer J, Lange M, et al. Efficient and equitable spatial allocation of renewable power plants at the country scale. Nat Energy, 2017, 2: 17124

    Google Scholar 

  5. Siria A, Bocquet ML, Bocquet L. New avenues for the large-scale harvesting of blue energy. Nat Rev Chem, 2017, 1: 0091

    CAS  Google Scholar 

  6. British Petroleum (BP). Statistical Review of World Energy 2018. BP, 2018

  7. Peters M, Köhler B, Kuckshinrichs W, et al. Chemical technologies for exploiting and recycling carbon dioxide into the value chain. ChemSusChem, 2011, 4: 1216–1240

    CAS  Google Scholar 

  8. Zhang N, Long R, Gao C, et al. Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci China Mater, 2018, 61: 771–805

    CAS  Google Scholar 

  9. Rau GH, Willauer HD, Ren ZJ. The global potential for converting renewable electricity to negative-CO2-emissions hydrogen. Nat Clim Change, 2018, 8: 621–625

    Google Scholar 

  10. Bickle MJ. Geological carbon storage. Nat Geosci, 2009, 2: 815–818

    CAS  Google Scholar 

  11. Sanna A, Uibu M, Caramanna G, et al. A review of mineral carbonation technologies to sequester CO2. Chem Soc Rev, 2014, 43: 8049–8080

    CAS  Google Scholar 

  12. Albo J, Alvarez-Guerra M, Castaño P, et al. Towards the electrochemical conversion of carbon dioxide into methanol. Green Chem, 2015, 17: 2304–2324

    CAS  Google Scholar 

  13. Aresta M, Dibenedetto A, Angelini A. Catalysis for the valorization of exhaust carbon: From CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev, 2014, 114: 1709–1742

    CAS  Google Scholar 

  14. Apaydin DH, Schlager S, Portenkirchner E, et al. Organic, organometallic and bioorganic catalysts for electrochemical reduction of CO2. ChemPhysChem, 2017, 18: 3094–3116

    CAS  Google Scholar 

  15. Zhang H, Zhang Y, Li Y, et al. Cu nanowire-catalyzed electrochemical reduction of CO or CO2. Nanoscale, 2019, 11: 12075–12079

    CAS  Google Scholar 

  16. Li F, MacFarlane DR, Zhang J. Recent advances in the nanoengineering of electrocatalysts for CO2 reduction. Nanoscale, 2018, 10: 6235–6260

    CAS  Google Scholar 

  17. Zhang W, Hu Y, Ma L, et al. Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv Sci, 2018, 5: 1700275

    Google Scholar 

  18. Li J, Chen G, Zhu Y, et al. Efficient electrocatalytic CO2 reduction on a three-phase interface. Nat Catal, 2018, 1: 592–600

    CAS  Google Scholar 

  19. Kas R, Hummadi KK, Kortlever R, et al. Three-dimensional porous hollow fibre copper electrodes for efficient and high-rate electrochemical carbon dioxide reduction. Nat Commun, 2016, 7: 10748

    CAS  Google Scholar 

  20. Costentin C, Robert M, Savéant JM. Catalysis of the electrochemical reduction of carbon dioxide. Chem Soc Rev, 2013, 42: 2423–2436

    CAS  Google Scholar 

  21. Peterson AA, Nørskov JK. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J Phys Chem Lett, 2012, 3: 251–258

    CAS  Google Scholar 

  22. Klingan K, Kottakkat T, Jovanov ZP, et al. Reactivity determinants in electrodeposited Cu foams for electrochemical CO2 reduction. ChemSusChem, 2018, 11: 3449–3459

    CAS  Google Scholar 

  23. Miner EM, Gul S, Ricke ND, et al. Mechanistic evidence for ligand-centered electrocatalytic oxygen reduction with the conductive MOF Ni3(hexaiminotriphenylene)2. ACS Catal, 2017, 7: 7726–7731

    CAS  Google Scholar 

  24. Wang B, Côté AP, Furukawa H, et al. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature, 2008, 453: 207–211

    CAS  Google Scholar 

  25. Jiang K, Zhang L, **a T, et al. A water-stable fcu-MOF material with exposed amino groups for the multi-functional separation of small molecules. Sci China Mater, 2019, 62: 1315–1322

    CAS  Google Scholar 

  26. Jiang J, Zhao Y, Yaghi OM. Covalent chemistry beyond molecules. J Am Chem Soc, 2016, 138: 3255–3265

    CAS  Google Scholar 

  27. Diercks C, Kalmutzki M, Yaghi O. Covalent organic frameworks —Organic chemistry beyond the molecule. Molecules, 2017, 22: 1575–1581

    Google Scholar 

  28. Cao L, Tao P, Li M, et al. Synergistic effects of C/α-MoC and Ag for efficient oxygen reduction reaction. J Phys Chem Lett, 2018, 9: 779–784

    CAS  Google Scholar 

  29. Gu S, Wu S, Cao L, et al. Tunable redox chemistry and stability of radical intermediates in 2D covalent organic frameworks for high performance sodium ion batteries. J Am Chem Soc, 2019, 141: 9623–9628

    CAS  Google Scholar 

  30. Liu J, Zhu D, Guo C, et al. Design strategies toward advanced MOF-derived electrocatalysts for energy-conversion reactions. Adv Energy Mater, 2017, 7: 1700518

    Google Scholar 

  31. Cao L, Lv F, Liu Y, et al. A high performance O2 selective membrane based on CAU-1-NH2@polydopamine and the PMMA polymer for Li-air batteries. Chem Commun, 2015, 51: 4364–4367

    CAS  Google Scholar 

  32. Nath I, Chakraborty J, Verpoort F. Metal organic frameworks mimicking natural enzymes: A structural and functional analogy. Chem Soc Rev, 2016, 45: 4127–4170

    CAS  Google Scholar 

  33. Morozan A, Jaouen F. Metal organic frameworks for electrochemical applications. Energy Environ Sci, 2012, 5: 9269–9290

    CAS  Google Scholar 

  34. Wu S, Zhu Y, Huo Y, et al. Bimetallic organic frameworks derived CuNi/carbon nanocomposites as efficient electrocatalysts for oxygen reduction reaction. Sci China Mater, 2017, 60: 654–663

    CAS  Google Scholar 

  35. Hendon CH, Rieth AJ, Korzyński MD, et al. Grand challenges and future opportunities for metal-organic frameworks. ACS Cent Sci, 2017, 3: 554–563

    CAS  Google Scholar 

  36. Yaghi OM. Reticular chemistry—construction, properties, and precision reactions of frameworks. J Am Chem Soc, 2016, 138: 15507–15509

    CAS  Google Scholar 

  37. Park SS, Rieth AJ, Hendon CH, et al. Selective vapor pressure dependent proton transport in a metal-organic framework with two distinct hydrophilic pores. J Am Chem Soc, 2018, 140: 2016–2019

    CAS  Google Scholar 

  38. ** toward record electrical conductivity in a three-dimensional metal-organic framework. J Am Chem Soc, 2018, 140: 7411–7414

    CAS  Google Scholar 

  39. Hod I, Farha OK, Hupp JT. Powered by porphyrin packing. Nat Mater, 2015, 14: 1192–1193

    CAS  Google Scholar 

  40. Hansen HA, Varley JB, Peterson AA, et al. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J Phys Chem Lett, 2013, 4: 388–392

    CAS  Google Scholar 

  41. Seifitokaldani A, Gabardo CM, Burdyny T, et al. Hydronium-induced switching between CO2 electroreduction pathways. J Am Chem Soc, 2018, 140: 3833–3837

    CAS  Google Scholar 

  42. Feaster JT, Shi C, Cave ER, et al. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes. ACS Catal, 2017, 7: 4822–4827

    CAS  Google Scholar 

  43. Chen J, Wang Z, Lee H, et al. Efficient electroreduction of CO2 to CO by Ag-decorated S-doped g-C3N4/CNT nanocomposites at industrial scale current density. Mater Today Phys, 2020, 12: 100176

    Google Scholar 

  44. Cheng T, **ao H, Goddard Iii WA. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc Natl Acad Sci USA, 2017, 114: 1795–1800

    CAS  Google Scholar 

  45. Montoya JH, Shi C, Chan K, et al. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J Phys Chem Lett, 2015, 6: 2032–2037

    CAS  Google Scholar 

  46. Schouten KJP, Kwon Y, van der Ham CJM, et al. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem Sci, 2012, 2: 1902–1909

    Google Scholar 

  47. Luo M, Wang Z, Li YC, et al. Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. Nat Commun, 2019, 10: 5814

    CAS  Google Scholar 

  48. Li YC, Wang Z, Yuan T, et al. Binding site diversity promotes CO2 electroreduction to ethanol. J Am Chem Soc, 2019, 141: 8584–8591

    CAS  Google Scholar 

  49. Goodpaster JD, Bell AT, Head-Gordon M. Identification of possible pathways for C-C bond formation during electrochemical reduction of CO2: New theoretical insights from an improved electrochemical model. J Phys Chem Lett, 2016, 7: 1471–1477

    CAS  Google Scholar 

  50. Li J, Wang Z, McCallum C, et al. Constraining CO coverage on copper promotes high-efficiency ethylene electroproduction. Nat Catal, 2019, 2: 1124–1131

    CAS  Google Scholar 

  51. Wang X, Xu A, Li F, et al. Efficient methane electrosynthesis enabled by tuning local CO2 availability. J Am Chem Soc, 2020, 142: 3525–3531

    CAS  Google Scholar 

  52. Wang Y, Wang Z, Dinh CT, et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat Catal, 2020, 3: 98–106

    CAS  Google Scholar 

  53. Liu M, Liu M, Wang X, et al. Quantum-dot-derived catalysts for CO2 reduction reaction. Joule, 2019, 3: 1703–1718

    CAS  Google Scholar 

  54. Ross MB, De Luna P, Li Y, et al. Designing materials for electrochemical carbon dioxide recycling. Nat Catal, 2019, 2: 648–658

    CAS  Google Scholar 

  55. Li F, Li YC, Wang Z, et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule-metal catalyst interfaces. Nat Catal, 2020, 3: 75–82

    CAS  Google Scholar 

  56. Li F, Thevenon A, Rosas-Hernández A, et al. Molecular tuning of CO2-to-ethylene conversion. Nature, 2020, 577: 509–513

    CAS  Google Scholar 

  57. Zhao G, Huang X, Wang X, et al. Progress in catalyst exploration for heterogeneous CO2 reduction and utilization: A critical review. J Mater Chem A, 2017, 5: 21625–21649

    CAS  Google Scholar 

  58. Kuhl KP, Hatsukade T, Cave ER, et al. Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J Am Chem Soc, 2014, 136: 14107–14113

    CAS  Google Scholar 

  59. Gattrell M, Gupta N, Co A. A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J Electroanal Chem, 2006, 594: 1–19

    CAS  Google Scholar 

  60. Peterson AA, Abild-Pedersen F, Studt F, et al. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ Sci, 2010, 3: 1311–1315

    CAS  Google Scholar 

  61. Lu Q, Jiao F. Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering. Nano Energy, 2016, 29: 439–456

    CAS  Google Scholar 

  62. Ma M, Trześniewski BJ, **e J, et al. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angew Chem Int Ed, 2016, 55: 9748–9752

    CAS  Google Scholar 

  63. Durand WJ, Peterson AA, Studt F, et al. Structure effects on the energetics of the electrochemical reduction of CO2 by copper surfaces. Surf Sci, 2011, 605: 1354–1359

    CAS  Google Scholar 

  64. Chen Y, Li CW, Kanan MW. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J Am Chem Soc, 2012, 134: 19969–19972

    CAS  Google Scholar 

  65. Zhang Y, Zhang X, Bond AM, et al. Identification of a new substrate effect that enhances the electrocatalytic activity of dendritic tin in CO2 reduction. Phys Chem Chem Phys, 2018, 20: 5936–5941

    CAS  Google Scholar 

  66. Gu J, Héroguel F, Luterbacher J, et al. Densely packed, ultra small SnO nanoparticles for enhanced activity and selectivity in electrochemical CO2 reduction. Angew Chem Int Ed, 2018, 57: 2943–2947

    CAS  Google Scholar 

  67. Huo S, Weng Z, Wu Z, et al. Coupled metal/oxide catalysts with tunable product selectivity for electrocatalytic CO2 reduction. ACS Appl Mater Interfaces, 2017, 9: 28519–28526

    CAS  Google Scholar 

  68. Hall AS, Yoon Y, Wuttig A, et al. Mesostructure-induced selectivity in CO2 reduction catalysis. J Am Chem Soc, 2015, 137: 14834–14837

    CAS  Google Scholar 

  69. Yoon Y, Hall AS, Surendranath Y. Tuning of silver catalyst mesostructure promotes selective carbon dioxide conversion into fuels. Angew Chem Int Ed, 2016, 55: 15282–15286

    CAS  Google Scholar 

  70. Larrazábal GO, Shinagawa T, Martín AJ, et al. Microfabricated electrodes unravel the role of interfaces in multicomponent copper-based CO2 reduction catalysts. Nat Commun, 2018, 9: 1477

    Google Scholar 

  71. Voiry D, Shin HS, Loh KP, et al. Low-dimensional catalysts for hydrogen evolution and CO2 reduction. Nat Rev Chem, 2018, 2: 1–7

    Google Scholar 

  72. Lu Q, Rosen J, Zhou Y, et al. A selective and efficient electrocatalyst for carbon dioxide reduction. Nat Commun, 2014, 5: 3242

    Google Scholar 

  73. Rasul S, Anjum DH, Jedidi A, et al. A highly selective copper-indium bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to CO. Angew Chem Int Ed, 2015, 54: 2146–2150

    CAS  Google Scholar 

  74. Yin Z, Gao D, Yao S, et al. Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO. Nano Energy, 2016, 27: 35–43

    CAS  Google Scholar 

  75. Zhang X, Li F, Zhang Y, et al. Stannate derived bimetallic nanoparticles for electrocatalytic CO2 reduction. J Mater Chem A, 2018, 6: 7851–7858

    CAS  Google Scholar 

  76. Kim D, Resasco J, Yu Y, et al. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat Commun, 2014, 5: 4948

    CAS  Google Scholar 

  77. Asadi M, Kim K, Liu C, et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science, 2016, 353: 467–470

    CAS  Google Scholar 

  78. Hong X, Chan K, Tsai C, et al. How doped MoS2 breaks transition-metal scaling relations for CO2 electrochemical reduction. ACS Catal, 2016, 6: 4428–4437

    CAS  Google Scholar 

  79. Liu X, Yang H, He J, et al. Highly active, durable ultrathin MoTe2 layers for the electroreduction of CO2 to CH4. Small, 2018, 14: 1704049

    Google Scholar 

  80. Asadi M, Kumar B, Behranginia A, et al. Robust carbon dioxide reduction on molybdenum disulphide edges. Nat Commun, 2014, 5: 4470

    CAS  Google Scholar 

  81. Vasileff A, Zheng Y, Qiao SZ. Carbon solving carbon’s problems: Recent progress of nanostructured carbon-based catalysts for the electrochemical reduction of CO2. Adv Energy Mater, 2017, 7: 1700759

    Google Scholar 

  82. Blake P, Brimicombe PD, Nair RR, et al. Graphene-based liquid crystal device. Nano Lett, 2009, 8: 1704–1708

    Google Scholar 

  83. Eda G, Fanchini G, Chhowalla M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotech, 2008, 3: 270–274

    CAS  Google Scholar 

  84. Duan X, Xu J, Wei Z, et al. Metal-free carbon materials for CO2 electrochemical reduction. Adv Mater, 2017, 29: 1701784

    Google Scholar 

  85. Zhu Y, Murali S, Stoller MD, et al. Carbon-based supercapacitors produced by activation of graphene. Science, 2011, 332: 1537–1541

    CAS  Google Scholar 

  86. Li W, Seredych M, Rodríguez-Castellón E, et al. Metal-free nanoporous carbon as a catalyst for electrochemical reduction of CO2 to CO and CH4. ChemSusChem, 2016, 9: 606–616

    CAS  Google Scholar 

  87. **e J, Zhao X, Wu M, et al. Metal-free fluorine-doped carbon electrocatalyst for CO2 reduction outcompeting hydrogen evolution. Angew Chem Int Ed, 2018, 57: 9640–9644

    CAS  Google Scholar 

  88. Li W, Bandosz TJ. Role of heteroatoms in S,N-codoped nanoporous carbon materials in CO2 (photo)electrochemical reduction. ChemSusChem, 2018, 11: 2987–2999

    CAS  Google Scholar 

  89. Liu Y, Chen S, Quan X, et al. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J Am Chem Soc, 2015, 137: 11631–11636

    CAS  Google Scholar 

  90. Zou X, Liu M, Wu J, et al. How nitrogen-doped graphene quantum dots catalyze electroreduction of CO2 to hydrocarbons and oxygenates. ACS Catal, 2017, 7: 6245–6250

    CAS  Google Scholar 

  91. Yang HP, Lin Q, Zhang HW, et al. Selective electrochemical reduction of CO2 by a binder-free platinum/nitrogen-doped carbon nanofiber/copper foil catalyst with remarkable efficiency and reusability. Electrochem Commun, 2018, 93: 138–142

    CAS  Google Scholar 

  92. Sun X, Lu L, Zhu Q, et al. MoP nanoparticles supported on indium-doped porous carbon: outstanding catalysts for highly efficient CO2 electroreduction. Angew Chem Int Ed, 2018, 57: 2427–2431

    CAS  Google Scholar 

  93. Varela AS, Ju W, Strasser P. Molecular nitrogen-carbon catalysts, solid metal organic framework catalysts, and solid metal/nitrogen-doped carbon (MNC) catalysts for the electrochemical CO2 reduction. Adv Energy Mater, 2018, 8: 1703614

    Google Scholar 

  94. Baturina OA, Lu Q, Padilla MA, et al. CO2 electroreduction to hydrocarbons on carbon-supported Cu nanoparticles. ACS Catal, 2014, 4: 3682–3695

    CAS  Google Scholar 

  95. Varela AS, Ranjbar Sahraie N, Steinberg J, et al. Metal-doped nitrogenated carbon as an efficient catalyst for direct CO2 electroreduction to CO and hydrocarbons. Angew Chem Int Ed, 2015, 54: 10758–10762

    CAS  Google Scholar 

  96. Ju W, Bagger A, Hao GP, et al. Understanding activity and selectivity of metal-nitrogen-doped carbon catalysts for electrochemical reduction of CO2. Nat Commun, 2017, 8: 944

    Google Scholar 

  97. Pan F, Zhang H, Liu K, et al. Unveiling active sites of CO2 reduction on nitrogen-coordinated and atomically dispersed iron and cobalt catalysts. ACS Catal, 2018, 8: 3116–3122

    CAS  Google Scholar 

  98. Zhang C, Yang S, Wu J, et al. Electrochemical CO2 reduction with atomic iron-dispersed on nitrogen-doped graphene. Adv Energy Mater, 2018, 8: 1703487

    Google Scholar 

  99. Rao H, Schmidt LC, Bonin J, et al. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature, 2014, 548: 74–77

    Google Scholar 

  100. Elgrishi N, Chambers MB, Wang X, et al. Molecular polypyridine-based metal complexes as catalysts for the reduction of CO2. Chem Soc Rev, 2017, 46: 761–796

    CAS  Google Scholar 

  101. Grice KA, Saucedo C. Electrocatalytic reduction of CO2 by group 6 M(CO)6 species without “non-innocent” ligands. Inorg Chem, 2016, 55: 6240–6246

    CAS  Google Scholar 

  102. Bourrez M, Molton F, Chardon-Noblat S, et al. [Mn(bipyridyl) (CO)3Br]: An abundant metal carbonyl complex as efficient electrocatalyst for CO2 reduction. Angew Chem Int Ed, 2011, 50: 9903–9906

    CAS  Google Scholar 

  103. Takeda H, Cometto C, Ishitani O, et al. Electrons, photons, protons and earth-abundant metal complexes for molecular catalysis of CO2 reduction. ACS Catal, 2017, 7: 70–88

    CAS  Google Scholar 

  104. Azcarate I, Costentin C, Robert M, et al. Through-space charge interaction substituent effects in molecular catalysis leading to the design of the most efficient catalyst of CO2-to-CO electrochemical conversion. J Am Chem Soc, 2016, 138: 16639–16644

    CAS  Google Scholar 

  105. Costentin C, Drouet S, Robert M, et al. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science, 2012, 338: 90–94

    CAS  Google Scholar 

  106. Costentin C, Passard G, Robert M, et al. Ultraefficient homogeneous catalyst for the CO2-to-CO electrochemical conversion. Proc Natl Acad Sci USA, 2014, 111: 14990–14994

    CAS  Google Scholar 

  107. Costentin C, Robert M, Savéant JM, et al. Efficient and selective molecular catalyst for the CO2-to-CO electrochemical conversion in water. Proc Natl Acad Sci USA, 2015, 112: 6882–6886

    CAS  Google Scholar 

  108. Bullock RM, Das AK, Appel AM. Surface immobilization of molecular electrocatalysts for energy conversion. Chem Eur J, 2017, 23: 7626–7641

    CAS  Google Scholar 

  109. Sun C, Prosperini S, Quagliotto P, et al. Electrocatalytic reduction of CO2 by thiophene-substituted rhenium(I) complexes and by their polymerized films. Dalton Trans, 2016, 45: 14678–14688

    CAS  Google Scholar 

  110. Liu X, Inagaki S, Gong J. Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation. Angew Chem Int Ed, 2016, 55: 14924–14950

    CAS  Google Scholar 

  111. Shen J, Kortlever R, Kas R, et al. Electrocatalytic reduction of carbon dioxide to carbon monoxide and methane at an immobilized cobalt protoporphyrin. Nat Commun, 2015, 6: 8177

    Google Scholar 

  112. Choi J, Wagner P, Jalili R, et al. A porphyrin/graphene framework: A highly efficient and robust electrocatalyst for carbon dioxide reduction. Adv Energy Mater, 2018, 8: 1801280

    Google Scholar 

  113. Sun C, Rotundo L, Garino C, et al. Electrochemical CO2 reduction at glassy carbon electrodes functionalized by MnI and ReI organometallic complexes. ChemPhysChem, 2017, 18: 3219–3229

    CAS  Google Scholar 

  114. Hu XM, Rønne MH, Pedersen SU, et al. Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials. Angew Chem, 2017, 129: 6568–6572

    Google Scholar 

  115. Kosal ME, Chou JH, Wilson SR, et al. A functional zeolite analogue assembled from metalloporphyrins. Nat Mater, 2002, 1: 118–121

    CAS  Google Scholar 

  116. Abrahams BF, Hoskins BF, Michail DM, et al. Assembly of porphyrin building blocks into network structures with large channels. Nature, 1994, 369: 727–729

    CAS  Google Scholar 

  117. Lee CY, Farha OK, Hong BJ, et al. Light-harvesting metal-organic frameworks (MOFs): Efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs. J Am Chem Soc, 2011, 133: 15858–15861

    CAS  Google Scholar 

  118. Smith PT, Benke BP, Cao Z, et al. Iron porphyrins embedded into a supramolecular porous organic cage for electrochemical CO2 reduction in water. Angew Chem Int Ed, 2018, 57: 9684–9688

    CAS  Google Scholar 

  119. Fateeva A, Chater PA, Ireland CP, et al. A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis. Angew Chem Int Ed, 2012, 51: 7440–7444

    CAS  Google Scholar 

  120. Wan S, Gándara F, Asano A, et al. Covalent organic frameworks with high charge carrier mobility. Chem Mater, 2011, 23: 4094–4097

    CAS  Google Scholar 

  121. Lin S, Diercks CS, Zhang YB, et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science, 2015, 349: 1208–1213

    CAS  Google Scholar 

  122. Behar D, Dhanasekaran T, Neta P, et al. Cobalt porphyrin catalyzed reduction of CO2. Radiation chemical, photochemical, and electrochemical studies. J Phys Chem A, 1998, 102: 2870–2877

    CAS  Google Scholar 

  123. Pander Iii JE, Fogg A, Bocarsly AB. Utilization of electro-polymerized films of cobalt porphyrin for the reduction of carbon dioxide in aqueous media. ChemCatChem, 2016, 8: 3536–3545

    CAS  Google Scholar 

  124. Lin CY, Zhang D, Zhao Z, et al. Covalent organic framework electrocatalysts for clean energy conversion. Adv Mater, 2018, 30: 1703646

    Google Scholar 

  125. Diercks CS, Lin S, Kornienko N, et al. Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction. J Am Chem Soc, 2018, 140: 1116–1122

    CAS  Google Scholar 

  126. Shultz AM, Farha OK, Hupp JT, et al. A catalytically active, permanently microporous MOF with metalloporphyrin struts. J Am Chem Soc, 2009, 131: 4204–4205

    CAS  Google Scholar 

  127. Ahrenholtz SR, Epley CC, Morris AJ. Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hop** charge-transfer mechanism. J Am Chem Soc, 2014, 136: 2464–2472

    CAS  Google Scholar 

  128. Morris W, Volosskiy B, Demir S, et al. Synthesis, structure, and metalation of two new highly porous zirconium metal-organic frameworks. Inorg Chem, 2012, 51: 6443–6445

    CAS  Google Scholar 

  129. Hod I, Sampson MD, Deria P, et al. Fe-porphyrin-based metal-organic framework films as high-surface concentration, heterogeneous catalysts for electrochemical reduction of CO2. ACS Catal, 2015, 5: 6302–6309

    CAS  Google Scholar 

  130. Dong BX, Qian SL, Bu FY, et al. Electrochemical reduction of CO2 to CO by a heterogeneous catalyst of Fe-porphyrin-based metal-organic framework. ACS Appl Energy Mater, 2018, 1: 4662–4669

    CAS  Google Scholar 

  131. Kornienko N, Zhao Y, Kley CS, et al. Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J Am Chem Soc, 2015, 137: 14129–14135

    CAS  Google Scholar 

  132. Hod I, Bury W, Karlin DM, et al. Directed growth of electroactive metal-organic framework thin films using electrophoretic deposition. Adv Mater, 2014, 26: 6295–6300

    CAS  Google Scholar 

  133. Nielsen IMB, Leung K. Cobalt-porphyrin catalyzed electrochemical reduction of carbon dioxide in water. 1. A density functional study of intermediates. J Phys Chem A, 2010, 114: 10166–10173

    CAS  Google Scholar 

  134. Shen J, Kolb MJ, Göttle AJ, et al. DFT study on the mechanism of the electrochemical reduction of CO2 catalyzed by cobalt porphyrins. J Phys Chem C, 2016, 120: 15714–15721

    CAS  Google Scholar 

  135. Ye L, Liu J, Gao Y, et al. Highly oriented MOF thin film-based electrocatalytic device for the reduction of CO2 to CO exhibiting high faradaic efficiency. J Mater Chem A, 2016, 4: 15320–15326

    CAS  Google Scholar 

  136. Benson EE, Kubiak CP. Structural investigations into the deactivation pathway of the CO2 reduction electrocatalyst Re(bpy) (CO)3Cl. Chem Commun, 2012, 48: 7374–7376

    CAS  Google Scholar 

  137. Yao CL, Li JC, Gao W, et al. An integrated design with new metal-functionalized covalent organic frameworks for the effective electroreduction of CO2. Chem Eur J, 2018, 24: 11051–11058

    CAS  Google Scholar 

  138. Tian Z, Priest C, Chen L. Recent progress in the theoretical investigation of electrocatalytic reduction of CO2. Adv Theor Simul, 2018, 1: 1800004

    Google Scholar 

  139. Hernández S, Amin Farkhondehfal M, Sastre F, et al. Syngas production from electrochemical reduction of CO2: Current status and prospective implementation. Green Chem, 2017, 19: 2326–2346

    Google Scholar 

  140. Hori Y, Wakebe H, Tsukamoto T, et al. Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta, 1994, 39: 1833–1839

    CAS  Google Scholar 

  141. Loiudice A, Lobaccaro P, Kamali EA, et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew Chem Int Ed, 2016, 55: 5789–5792

    CAS  Google Scholar 

  142. Gu Z, Shen H, Shang L, et al. Nanostructured copper-based electrocatalysts for CO2 reduction. Small Methods, 2018, 2: 1800121

    Google Scholar 

  143. Hinogami R, Yotsuhashi S, Deguchi M, et al. Electrochemical reduction of carbon dioxide using a copper rubeanate metal organic framework. ECS Electrochem Lett, 2012, 1: H17–H19

    CAS  Google Scholar 

  144. Senthil Kumar R, Senthil Kumar S, Anbu Kulandainathan M. Highly selective electrochemical reduction of carbon dioxide using Cu based metal organic framework as an electrocatalyst. Electrochem Commun, 2012, 25: 70–73

    Google Scholar 

  145. Dai L, Qin Q, Wang P, et al. Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide. Sci Adv, 2017, 3: e1701069

    Google Scholar 

  146. Albo J, Vallejo D, Beobide G, et al. Copper-based metal-organic porous materials for CO2 electrocatalytic reduction to alcohols. ChemSusChem, 2017, 10: 1100–1109

    CAS  Google Scholar 

  147. Albo J, Irabien A. Cu2O-loaded gas diffusion electrodes for the continuous electrochemical reduction of CO2 to methanol. J Catal, 2015, 343: 232–239

    Google Scholar 

  148. Perfecto-Irigaray M, Albo J, Beobide G, et al. Synthesis of heterometallic metal-organic frameworks and their performance as electrocatalyst for CO2 reduction. RSC Adv, 2018, 8: 21092–21099

    CAS  Google Scholar 

  149. Jiang K, Sandberg RB, Akey AJ, et al. Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO2 reduction. Nat Catal, 2018, 1: 111–119

    CAS  Google Scholar 

  150. Zhou Y, Che F, Liu M, et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat Chem, 2018, 10: 974–980

    CAS  Google Scholar 

  151. Kang X, Zhu Q, Sun X, et al. Highly efficient electrochemical reduction of CO2 to CH4 in an ionic liquid using a metal-organic framework cathode. Chem Sci, 2016, 7: 266–273

    CAS  Google Scholar 

  152. Roy N, Shibano Y, Terashima C, et al. Ionic-liquid-assisted selective and controlled electrochemical CO2 reduction at Cu-modified boron-doped diamond electrode. ChemElectroChem, 2016, 3: 1044–1047

    CAS  Google Scholar 

  153. Park KS, Ni Z, Côté AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA, 2006, 103: 10186–10191

    CAS  Google Scholar 

  154. Venna SR, Jasinski JB, Carreon MA. Structural evolution of zeolitic imidazolate framework-8. J Am Chem Soc, 2010, 132: 18030–18033

    CAS  Google Scholar 

  155. Huang XC, Lin YY, Zhang JP, et al. Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angew Chem Int Ed, 2006, 45: 1557–1559

    CAS  Google Scholar 

  156. Cravillon J, Munzer S, Lohmeier SJ, et al. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem Mater, 2009, 21: 1410–1412

    CAS  Google Scholar 

  157. Pan Y, Liu Y, Zeng G, et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chem Commun, 2011, 47: 2071–2073

    CAS  Google Scholar 

  158. Lin JB, Lin RB, Cheng XN, et al. Solvent/additive-free synthesis of porous/zeolitic metal azolate frameworks from metal oxide/hydroxide. Chem Commun, 2011, 47: 9185–9187

    CAS  Google Scholar 

  159. Wang Y, Hou P, Wang Z, et al. Zinc imidazolate metal-organic frameworks (ZIF-8) for electrochemical reduction of CO2 to CO. ChemPhysChem, 2017, 18: 3142–3147

    CAS  Google Scholar 

  160. Rosen BA, Hod I. Tunable molecular-scale materials for catalyzing the low-overpotential electrochemical conversion of CO2. Adv Mater, 2018, 30: 1706238

    Google Scholar 

  161. Liédana N, Galve A, Rubio C, et al. CAF@ZIF-8: One-step encapsulation of caffeine in MOF. ACS Appl Mater Interfaces, 2012, 4: 5016–5021

    Google Scholar 

  162. Rungtaweevoranit B, Baek J, Araujo JR, et al. Copper nanocrystals encapsulated in Zr-based metal-organic frameworks for highly selective CO2 hydrogenation to methanol. Nano Lett, 2016, 16: 7645–7649

    CAS  Google Scholar 

  163. Zhang SY, Yang YY, Zheng YQ, et al. Ag-doped Co3O4 catalyst derived from heterometallic MOF for syngas production by electrocatalytic reduction of CO2 in water. J Solid State Chem, 2018, 263: 44–51

    CAS  Google Scholar 

  164. Kung CW, Audu CO, Peters AW, et al. Copper nanoparticles installed in metal-organic framework thin films are electrocatalytically competent for CO2 reduction. ACS Energy Lett, 2017, 2: 2394–2401

    CAS  Google Scholar 

  165. Wang TC, Vermeulen NA, Kim IS, et al. Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000. Nat Protoc, 2016, 11: 149–162

    CAS  Google Scholar 

  166. Kopljar D, Wagner N, Klemm E. Transferring electrochemical CO2 reduction from semi-batch into continuous operation mode using gas diffusion electrodes. Chem Eng Technol, 2016, 39: 2042–2050

    CAS  Google Scholar 

  167. Marepally BC, Ampelli C, Genovese C, et al. Enhanced formation of >C1 products in electroreduction of CO2 by adding a CO2 adsorption component to a gas-diffusion layer-type catalytic electrode. ChemSusChem, 2017, 10: 4442–4446

    CAS  Google Scholar 

  168. Weng LC, Bell AT, Weber AZ. Modeling gas-diffusion electrodes for CO2 reduction. Phys Chem Chem Phys, 2018, 20: 16973–16984

    CAS  Google Scholar 

  169. Liu M, Pang Y, Zhang B, et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature, 2016, 537: 382–386

    CAS  Google Scholar 

  170. Rodríguez-Albelo LM, López-Maya E, Hamad S, et al. Selective sulfur dioxide adsorption on crystal defect sites on an isoreticular metal organic framework series. Nat Commun, 2017, 8: 14457

    Google Scholar 

  171. Liu G, Chernikova V, Liu Y, et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nat Mater, 2018, 17: 283–289

    CAS  Google Scholar 

  172. Han X, Godfrey HGW, Briggs L, et al. Reversible adsorption of nitrogen dioxide within a robust porous metal-organic framework. Nat Mater, 2018, 17: 691–696

    CAS  Google Scholar 

  173. Carrington EJ, McAnally CA, Fletcher AJ, et al. Solvent-switchable continuous-breathing behaviour in a diamondoid metal-organic framework and its influence on CO2versus CH4 selectivity. Nat Chem, 2017, 9: 882–889

    CAS  Google Scholar 

  174. Shekhah O, Belmabkhout Y, Chen Z, et al. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture. Nat Commun, 2014, 5: 4228

    CAS  Google Scholar 

  175. Liang L, Liu C, Jiang F, et al. Carbon dioxide capture and conversion by an acid-base resistant metal-organic framework. Nat Commun, 2017, 8: 1233

    Google Scholar 

  176. Ghalei B, Sakurai K, Kinoshita Y, et al. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nat Energy, 2017, 2: 17086

    Google Scholar 

  177. Yang S, Sun J, Ramirez-Cuesta AJ, et al. Selectivity and direct visualization of carbon dioxide and sulfur dioxide in a decorated porous host. Nat Chem, 2012, 4: 887–894

    CAS  Google Scholar 

  178. Qiu YL, Zhong HX, Zhang TT, et al. Selective electrochemical reduction of carbon dioxide using Cu based metal organic framework for CO2 capture. ACS Appl Mater Interfaces, 2018, 10: 2480–2489

    CAS  Google Scholar 

  179. Blinder SM, Nordman CE. Collision theory of chemical reactions. J Chem Educ, 1974, 51: 790–791

    Google Scholar 

  180. Liu H, Chu J, Yin Z, et al. Covalent organic frameworks linked by amine bonding for concerted electrochemical reduction of CO2. Chem, 2018, 4: 1696–1709

    CAS  Google Scholar 

  181. Li P, Zeng HC. Advanced oxygen evolution catalysis by bimetallic Ni-Fe phosphide nanoparticles encapsulated in nitrogen, phosphorus, and sulphur tri-doped porous carbon. Chem Commun, 2017, 53: 6025–6028

    CAS  Google Scholar 

  182. Zhang H, Liu X, Wu Y, et al. MOF-derived nanohybrids for electrocatalysis and energy storage: Current status and perspectives. Chem Commun, 2018, 54: 5268–5288

    CAS  Google Scholar 

  183. Yilmaz G, Yam KM, Zhang C, et al. In situ transformation of MOFs into layered double hydroxide embedded metal sulfides for improved electrocatalytic and supercapacitive performance. Adv Mater, 2017, 29: 1606814

    Google Scholar 

  184. Jiang Y, Liu H, Tan X, et al. Monoclinic ZIF-8 nanosheet-derived 2D carbon nanosheets as sulfur immobilizer for high-performance lithium sulfur batteries. ACS Appl Mater Interfaces, 2017, 9: 25239–25249

    CAS  Google Scholar 

  185. Li W, Hu S, Luo X, et al. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery. Adv Mater, 2017, 29: 1605820

    Google Scholar 

  186. Nam DH, Bushuyev OS, Li J, et al. Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J Am Chem Soc, 2018, 140: 11378–11386

    CAS  Google Scholar 

  187. Chung DY, Lee KJ, Yu SH, et al. Alveoli-inspired facile transport structure of N-doped porous carbon for electrochemical energy applications. Adv Energy Mater, 2015, 5: 1401309

    Google Scholar 

  188. Zhong S, Zhan C, Cao D. Zeolitic imidazolate framework-derived nitrogen-doped porous carbons as high performance supercapacitor electrode materials. Carbon, 2015, 85: 51–59

    CAS  Google Scholar 

  189. Wang R, Sun X, Ould-Chikh S, et al. Metal-organic-framework-mediated nitrogen-doped carbon for CO2 electrochemical reduction. ACS Appl Mater Interfaces, 2018, 10: 14751–14758

    CAS  Google Scholar 

  190. Zhang YZ, Wang Y, **e YL, et al. Porous hollow Co3O4 with rhombic dodecahedral structures for high-performance supercapacitors. Nanoscale, 2014, 6: 14354–14359

    CAS  Google Scholar 

  191. Huang G, Zhang F, Du X, et al. Metal organic frameworks route to in situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries. ACS Nano, 2015, 9: 1592–1599

    CAS  Google Scholar 

  192. Wang Y, Chen B, Chang Z, et al. Enhancing performance of sandwich-like cobalt sulfide and carbon for quasi-solid-state hybrid electrochemical capacitors. J Mater Chem A, 2017, 5: 8981–8988

    CAS  Google Scholar 

  193. Wei J, Hu Y, Liang Y, et al. Nitrogen-doped nanoporous carbon/graphene nano-sandwiches: Synthesis and application for efficient oxygen reduction. Adv Funct Mater, 2015, 25: 5768–5777

    CAS  Google Scholar 

  194. Qu Q, Gao T, Zheng H, et al. Graphene oxides-guided growth of ultrafine Co3O4 nanocrystallites from MOFs as high-performance anode of Li-ion batteries. Carbon, 2015, 92: 119–125

    CAS  Google Scholar 

  195. Wang Y, Chen B, Zhang Y, et al. ZIF-8@MWCNT-derived carbon composite as electrode of high performance for supercapacitor. Electrochim Acta, 2016, 213: 260–269

    Google Scholar 

  196. Guo Y, Yang H, Zhou X, et al. Electrocatalytic reduction of CO2 to CO with 100% faradaic efficiency by using pyrolyzed zeolitic imidazolate frameworks supported on carbon nanotube networks. J Mater Chem A, 2017, 5: 24867–24873

    CAS  Google Scholar 

  197. Zhang P, Zhu H, Dai S. Porous carbon supports: Recent advances with various morphologies and compositions. ChemCatChem, 2015, 7: 2788–2805

    CAS  Google Scholar 

  198. Li Q, Guo J, Xu D, et al. Electrospun N-doped porous carbon nanofibers incorporated with NiO nanoparticles as free-standing film electrodes for high-performance supercapacitors and CO2 capture. Small, 2018, 14: 1704203

    Google Scholar 

  199. Jhong HRM, Tornow CE, Smid B, et al. A nitrogen-doped carbon catalyst for electrochemical CO2 conversion to CO with high selectivity and current density. ChemSusChem, 2017, 10: 1094–1099

    CAS  Google Scholar 

  200. Shi JJ, Hu XM, Madsen MR, et al. Facile synthesis of iron- and nitrogen-doped porous carbon for selective CO2 electroreduction. ACS Appl Nano Mater, 2018, 1: 3608–3615

    CAS  Google Scholar 

  201. Zhao K, Liu Y, Quan X, et al. CO2 electroreduction at low overpotential on oxide-derived Cu/carbons fabricated from metal organic framework. ACS Appl Mater Interfaces, 2017, 9: 5302–5311

    CAS  Google Scholar 

  202. Zhuang TT, Liang ZQ, Seifitokaldani A, et al. Steering post-C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat Catal, 2018, 1: 421–428

    CAS  Google Scholar 

  203. Huang R, Peng Y, Wang C, et al. A rhenium-functionalized metal-organic framework as a single-site catalyst for photochemical reduction of carbon dioxide. Eur J Inorg Chem, 2016, 2016: 4358–4362

    CAS  Google Scholar 

  204. Thomas JM, Raja R, Lewis DW. Single-site heterogeneous catalysts. Angew Chem Int Ed, 2005, 44: 6456–6482

    CAS  Google Scholar 

  205. Wang X, Chen Z, Zhao X, et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2. Angew Chem Int Ed, 2018, 57: 1944–1948

    CAS  Google Scholar 

  206. Zhang B, Asakura H, Zhang J, et al. Stabilizing a platinum1 singleatom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew Chem Int Ed, 2016, 55: 8319–8323

    CAS  Google Scholar 

  207. Yin P, Yao T, Wu Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew Chem Int Ed, 2016, 55: 10800–10805

    CAS  Google Scholar 

  208. Rogge SMJ, Bavykina A, Hajek J, et al. Metal-organic and covalent organic frameworks as single-site catalysts. Chem Soc Rev, 2017, 46: 3134–3184

    CAS  Google Scholar 

  209. Canivet J, Aguado S, Schuurman Y, et al. MOF-supported selective ethylene dimerization single-site catalysts through one-pot postsynthetic modification. J Am Chem Soc, 2013, 135: 4195–4198

    CAS  Google Scholar 

  210. Li Z, Schweitzer NM, League AB, et al. Sintering-resistant singlesite nickel catalyst supported by metal-organic framework. J Am Chem Soc, 2016, 138: 1977–1982

    CAS  Google Scholar 

  211. Zhao C, Dai X, Yao T, et al. Ionic exchange of metal-organic frameworks to access single nickel sites for efficient electroreduction of CO2. J Am Chem Soc, 2017, 139: 8078–8081

    CAS  Google Scholar 

  212. Yang HB, Hung SF, Liu S, et al. Atomically dispersed Ni(I) as the active site for electrochemical CO2 reduction. Nat Energy, 2018, 3: 140–147

    CAS  Google Scholar 

  213. Qiu HJ, Ito Y, Cong W, et al. Nanoporous graphene with singleatom nickel dopants: An efficient and stable catalyst for electrochemical hydrogen production. Angew Chem, 2015, 127: 14237–14241

    Google Scholar 

  214. Huan TN, Ranjbar N, Rousse G, et al. Electrochemical reduction of CO2 catalyzed by Fe-N-C materials: A structure-selectivity study. ACS Catal, 2017, 7: 1520–1525

    CAS  Google Scholar 

  215. Zitolo A, Goellner V, Armel V, et al. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat Mater, 2015, 14: 937–942

    CAS  Google Scholar 

  216. Yan C, Ye Y, Lin L, et al. Improving CO2 electroreduction over ZIF-derived carbon doped with Fe-N sites by an additional ammonia treatment. Catal Today, 2019, 330: 252–258

    CAS  Google Scholar 

  217. Yang J, Zhang F, Lu H, et al. Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semihydrogenation of acetylene. Angew Chem Int Ed, 2015, 54: 10889–10893

    CAS  Google Scholar 

  218. Wright AM, Rieth AJ, Yang S, et al. Precise control of pore hydrophilicity enabled by post-synthetic cation exchange in metal-organic frameworks. Chem Sci, 2018, 9: 3856–3859

    CAS  Google Scholar 

  219. Song X, Zhang H, Yang Y, et al. Bifunctional nitrogen and cobalt codoped hollow carbon for electrochemical syngas production. Adv Sci, 2018, 5: 1800177

    Google Scholar 

  220. Schoedel A, Ji Z, Yaghi OM. The role of metal-organic frameworks in a carbon-neutral energy cycle. Nat Energy, 2016, 1: 16034

    CAS  Google Scholar 

  221. Trickett CA, Helal A, Al-Maythalony BA, et al. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion. Nat Rev Mater, 2017, 2: 17045

    CAS  Google Scholar 

  222. Diercks CS, Liu Y, Cordova KE, et al. The role of reticular chemistry in the design of CO2 reduction catalysts. Nat Mater, 2018, 17: 301–307

    CAS  Google Scholar 

  223. He CT, Jiang L, Ye ZM, et al. Exceptional hydrophobicity of a large-pore metal-organic zeolite. J Am Chem Soc, 2015, 137: 7217–7223

    CAS  Google Scholar 

  224. Busche MR, Drossel T, Leichtweiss T, et al. Dynamic formation of a solid-liquid electrolyte interphase and its consequences for hybrid-battery concepts. Nat Chem, 2018, 8: 426–434

    Google Scholar 

  225. Manthiram A, Yu X, Wang S. Lithium battery chemistries enabled by solid-state electrolytes. Nat Rev Mater, 2017, 2: 16103

    CAS  Google Scholar 

  226. Wu Y, Jiang J, Weng Z, et al. Electroreduction of CO2 catalyzed by a heterogenized Zn-porphyrin complex with a redox-innocent metal center. ACS Cent Sci, 2017, 3: 847–852

    CAS  Google Scholar 

  227. Li Y, Chan SH, Sun Q. Heterogeneous catalytic conversion of CO2: A comprehensive theoretical review. Nanoscale, 2015, 7: 8663–8683

    CAS  Google Scholar 

  228. Rosen BA, Salehi-Kho** A, Thorson MR, et al. Ionic liquidmediated selective conversion of CO2 to CO at low overpotentials. Science, 2011, 334: 643–644

    CAS  Google Scholar 

  229. Ma L, Fan S, Zhen D, et al. Electrochemical reduction of CO2 in proton exchange membrane reactor: The function of buffer layer. Ind Eng Chem Res, 2017, 56: 10242–10250

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21671096 and 11775105), and Shenzhen Peacock Plan (KQTD2016022620054656).

Author information

Authors and Affiliations

Authors

Contributions

Wang Y and Li Y conceived and wrote the paper under the supervision of Lu Z. Wang Z, Allan P and Zhang F helped in the revision of this review. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Phoebe Allan, Fucai Zhang  (张福才) or Zhouguang Lu  (卢周广).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Yanfang Wang received his BE degree from Central South University in 2014 and MS degree from Fudan University in 2017. Now, he is a PhD student at Southern University of Science and Technology (SUSTech), China, jointly with the University of Birmingham, UK. His research interests mainly focus on supercapacitors and lithium-ion batteries.

Zhouguang Lu is currently a professor in the Department of Materials Science and Engineering, SUSTech, China. He received his PhD degree from the City University of Hong Kong in 2009. He is the recipient of Fulbright Fellowship of USA Government in 2008–2009 and the Overseas High-Caliber Personnel (Level B) of Shenzhen Government in 2013. His research mainly covers the design and synthesis of nanostructures and their applications in energy storage and conversion with focus on lithium/sodium-ion and -air batteries. He has authored more than 160 peer-review journal papers with total citations more than 5600 and H-index of 46.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, Y., Wang, Z. et al. Reticular chemistry in electrochemical carbon dioxide reduction. Sci. China Mater. 63, 1113–1141 (2020). https://doi.org/10.1007/s40843-020-1304-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1304-3

Keywords

Navigation