Log in

Electrocatalyst engineering and structure-activity relationship in hydrogen evolution reaction: From nanostructures to single atoms

析氢反应中电催化剂设计与构效关系: 从纳米结构到单原子

  • Reviews
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

With the ever-pressing issues of global energy demand and environmental pollution, molecular hydrogen has been receiving increasing attention as a clean alternative energy carrier. For hydrogen production, the design and development of high-performance catalysts remains rather challenging. As the compositions and structures of catalyst interfaces have paramount influences on the catalytic performances, the central topic here has always been to design and engineer the interface structures via rational routes so as to boost the activities and stabilities of electrocatalysts on hydrogen evolution reaction (HER). Here in this review, we focus on the design and preparation of multi-scale catalysts specifically catering to HER applications. We start from the design and structure-activity relationship of catalytic nanostructures, summarize the research progresses related to HER nanocatalysts, and interpret their high activities from the atomistic perspective; then, we review the studies regarding the design, preparation, HER applications and structure-activity relationship of single-atom site catalysts (SASCs), and thereupon discuss the future directions in designing HER-oriented SASCs. At the end of this review, we present an outlook on the development trends and faced challenges of catalysts for electrochemical HER.

摘要

随着全球能源需求的增加和环境污染的加剧, 氢能作为一种新型的能源越来越受到广泛的关注. 高效催化剂的设计和开发是制氢研究中极具挑战性的难题. 催化剂的表界面组成与结构对其 性能具有极其重要的影响, 如何科学地设计调控催化材料表界面结构来提高电催化析氢反应的活性和稳定性一直是催化领域研究的重点. 本综述针对电催化析氢体系中的多尺度催化剂设计合成为研究对象, 以纳米结构催化剂的设计及构效关系为出发点, 总结了目前针对电催化析氢反应的纳米催化剂的合成及构效关系的研究进展, 从原子尺度提出纳米催化剂高活性的起源. 结合目前报道的各种单原子催化剂的设计合成、 在析氢反应中的应用及构效关系的研究, 讨论了设计定向单原子位点析氢催化剂的方向, 同时对电解水制氢催化剂的发展趋势和挑战进行了展望.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turner J A. Sustainable hydrogen production. Science, 2004, 305: 972–974

    CAS  Google Scholar 

  2. Zheng Y, Jiao Y, Qiao S Z. Engineering of carbon-based electro-catalysts for emerging energy conversion: From fundamentality to functionality. Adv M ater, 2015, 27: 5372–5378

    CAS  Google Scholar 

  3. Shi Y, Zhang B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem S oc Rev, 2016, 45: 1529–1541

    CAS  Google Scholar 

  4. Yi J D, Liu T T, Huang Y B, et al. Solid-state synthesis of MoS2 nanorod from molybdenum-organic framework for efficient hydrogen evolution reaction. Sci China Mater, 2019, 62: 965–972

    CAS  Google Scholar 

  5. Cao Z, Chen Q, Zhang J, et al. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nat Commun, 2017, 8: 15131–15137

    Google Scholar 

  6. Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev, 2015, 44: 5148–5180

    CAS  Google Scholar 

  7. Zeng M, Li Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A, 2015, 3: 14942–14962

    CAS  Google Scholar 

  8. Chen J, Lim B, Lee E P, et al. Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today, 2009, 4: 81–95

    Google Scholar 

  9. Li Y, Zhang H, Xu T, et al. Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution. Adv Funct Mater, 2015, 25: 1737–1744

    CAS  Google Scholar 

  10. Bai S, Wang C, Deng M, et al. Surface polarization matters: Enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt-Pd-graphene stack structures. Angew Chem Int Ed, 2014, 53: 12120–12124

    CAS  Google Scholar 

  11. Esposito D V, Chen J G. Monolayer platinum supported on tungsten carbides as low-cost electrocatalysts: Opportunities and limitations. Energy Environ Sci, 2011, 4: 3900–3912

    CAS  Google Scholar 

  12. **ng Z, Han C, Wang D, et al. Ultrafine Pt nanoparticle-deco-rated Co(OH)2 nanosheet arrays with enhanced catalytic activity toward hydrogen evolution. ACS Catal, 2017, 7: 7131–7135

    CAS  Google Scholar 

  13. **e L, Ren X, Liu Q, et al. A Ni(OH)2-Pt02 hybrid nanosheet array with ultralow Pt loading toward efficient and durable alkaline hydrogen evolution. J Mater Chem A, 2018, 6: 1967–1970

    CAS  Google Scholar 

  14. Tiwari J N, Sultan S, Myung C W, et al. Multicomponent elec-trocatalyst with ultralow Pt loading and high hydrogen evolution activity. Nat Energy, 2018, 3: 773–782

    CAS  Google Scholar 

  15. Yang H, Wang C, Hu F, et al. Atomic-scale Pt clusters decorated on porous a-Ni(OH)2 nanowires as highly efficient electrocatalyst for hydrogen evolution reaction. Sci China Mater, 2017, 60: 1121–1128

    CAS  Google Scholar 

  16. Wang S, Gao X, Hang X, et al. Ultrafine Pt nanoclusters confined in a calixarene-based {Ni24} coordination cage for high-efficient hydrogen evolution reaction. J Am Chem Soc, 2016, 138: 16236–16239

    CAS  Google Scholar 

  17. Chao T, Luo X, Chen W, et al. Atomically dispersed copper-platinum dual sites alloyed with palladium nanorings catalyze the hydrogen evolution reaction. Angew Chem Int Ed, 2017, 56: 16047–16051

    CAS  Google Scholar 

  18. Kerkeni S, Lamy-Pitara E, Barbier J. Copper-platinum catalysts prepared and characterized by electrochemical methods for the reduction of nitrate and nitrite. Catal Today, 2002, 75: 35–42

    CAS  Google Scholar 

  19. Zhong X, Wang L, Zhuang Z, et al. Double nanoporous structure with nanoporous PtFe embedded in graphene nanopores: Highly efficient bifunctional electrocatalysts for hydrogen evolution and oxygen reduction. Adv Mater Interfaces, 2017, 4: 1601029

    Google Scholar 

  20. Yang T T, Zhu H, Wan M, et al. Highly efficient and durable PtCo alloy nanoparticles encapsulated in carbon nanofibers for electrochemical hydrogen generation. Chem Commun, 2016, 52: 990–993

    CAS  Google Scholar 

  21. Zhang Z, Liu G, Cui X, et al. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution. Adv Mater, 2018, 30: 1801741

    Google Scholar 

  22. Oh A, Sa Y J, Hwang H, et al. Rational design of Pt-Ni-Co ternary alloy nanoframe crystals as highly efficient catalysts toward the alkaline hydrogen evolution reaction. Nanoscale, 2016, 8: 16379–16386

    CAS  Google Scholar 

  23. Shen Y, Lua A C, ** J, et al. Ternary platinum-copper-nickel nanoparticles anchored to hierarchical carbon supports as freestanding hydrogen evolution electrodes. ACS Appl Mater Interfaces, 2016, 8: 3464–3472

    CAS  Google Scholar 

  24. Gong M, Zhou W, Tsai M C, et al. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat Commun, 2014, 5: 4695

    CAS  Google Scholar 

  25. Deng J, Ren P, Deng D, et al. Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ Sci, 2014, 7: 1919–1923

    CAS  Google Scholar 

  26. Deng J, Ren P, Deng D, et al. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew Chem Int Ed, 2015, 54: 2100–2104

    CAS  Google Scholar 

  27. Tavakkoli M, Kallio T, Reynaud O, et al. Single-shell carbon-encapsulated iron nanoparticles: Synthesis and high electro-catalytic activity for hydrogen evolution reaction. Angew Chem Int Ed, 2015, 54: 4535–4538

    CAS  Google Scholar 

  28. Norskov J K, Bligaard T, Logadottir A, et al. Trends in the exchange current for hydrogen evolution. J Electrochem Soc, 2005, 152: J23

    CAS  Google Scholar 

  29. Liu P, Rodriguez J A. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: The importance of ensemble effect. J Am Chem Soc, 2005, 127: 14871–14878

    CAS  Google Scholar 

  30. Popczun E J, McKone J R, Read C G, et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc, 2013, 135: 9267–9270

    CAS  Google Scholar 

  31. Xu Y, Wu R, Zhang J, et al. Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction. Chem Commun, 2013, 49: 6656–6658

    CAS  Google Scholar 

  32. Lu S, Zhuang Z. Electrocatalysts for hydrogen oxidation and evolution reactions. Sci China Mater, 2016, 59: 217–238

    CAS  Google Scholar 

  33. Zhao X, Luo D, Wang Y, et al. Reduced graphene oxide-supported CoP nanocrystals confined in porous nitrogen-doped carbon nanowire for highly enhanced lithium/sodium storage and hydrogen evolution reaction. Nano Res, 2019, 12: 2872–2880

    CAS  Google Scholar 

  34. Pan Y, Sun K, Liu S, et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J Am Chem Soc, 2018, 140: 2610–2618

    CAS  Google Scholar 

  35. Zhao D, Sun K, Cheong W C, et al. Synergistically interactive pyridinic-N-MoP sites: Identified active centers for enhanced hydrogen evolution in alkaline solution. Angew Chem, 2019,: ange.201908760

    Google Scholar 

  36. **ao P, Sk M A, Thia L, et al. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ Sci, 2014, 7: 2624–2629

    CAS  Google Scholar 

  37. Hao J, Yang W, Zhang Z, et al. Metal-organic frameworks derived CoxFe1-xP nanocubes for electrochemical hydrogen evolution. Nanoscale, 2015, 7: 11055–11062

    CAS  Google Scholar 

  38. Li Y, Zhang H, Jiang M, et al. Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Res, 2016, 9: 2251–2259

    CAS  Google Scholar 

  39. Tang C, Gan L, Zhang R, et al. Ternary FexCo1-xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: Experimental and theoretical insight. Nano Lett, 2016, 16: 6617–6621

    CAS  Google Scholar 

  40. Li Y, Zhang H, Jiang M, et al. 3D self-supported Fe-doped Ni2P nanosheet arrays as bifunctional catalysts for overall water splitting. Adv Funct Mater, 2017, 27: 1702513

    Google Scholar 

  41. Liang X, Zhang D, Wu Z, et al. The Fe-promoted MoP catalyst with high activity for water splitting. Appl Catal A-General, 2016, 524: 134–138

    CAS  Google Scholar 

  42. Li J, Yan M, Zhou X, et al. Mechanistic insights on ternary Ni2-xCoxP for hydrogen evolution and their hybrids with gra-phene as highly efficient and robust catalysts for overall water splitting. Adv Funct Mater, 2016, 26: 6785–6796

    CAS  Google Scholar 

  43. Man H W, Tsang C S, Li M M J, et al. Transition metal-doped nickel phosphide nanoparticles as electro- and photocatalysts for hydrogen generation reactions. Appl Catal B-Environ, 2019, 242: 186–193

    CAS  Google Scholar 

  44. Zhang L F, Ke X, Ou G, et al. Defective MoS2 electrocatalyst for highly efficient hydrogen evolution through a simple ball-milling method. Sci China Mater, 2017, 60: 849–856

    CAS  Google Scholar 

  45. Di Giovanni C, Wang W A, Nowak S, et al. Bioinspired iron sulfide nanoparticles for cheap and long-lived electrocatalytic molecular hydrogen evolution in neutral water. ACS Catal, 2014, 4: 681–687

    Google Scholar 

  46. Kong D, Cha J J, Wang H, et al. First-row transition metal di-chalcogenide catalysts for hydrogen evolution reaction. Energy Environ Sci, 2013, 6: 3553

    CAS  Google Scholar 

  47. Faber M S, Dziedzic R, Lukowski M A, et al. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J Am Chem Soc, 2014, 136: 10053–10061

    CAS  Google Scholar 

  48. Peng S, Li L, Han X, et al. Cobalt sulfide nanosheet/graphene/ carbon nanotube nanocomposites as flexible electrodes for hydrogen evolution. Angew Chem, 2014, 126: 12802–12807

    Google Scholar 

  49. Tang C, Pu Z, Liu Q, et al. NiS2 nanosheets array grown on carbon cloth as an efficient 3D hydrogen evolution cathode. Electrochim Acta, 2015, 153: 508–514

    CAS  Google Scholar 

  50. Voiry D, Yamaguchi H, Li J, et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater, 2013, 12: 850–855

    CAS  Google Scholar 

  51. Zhao X, Ma X, Sun J, et al. Enhanced catalytic activities of surfactant-assisted exfoliated WS2 nanodots for hydrogen evolution. ACS Nano, 2016, 10: 2159–2166

    CAS  Google Scholar 

  52. Xu S, Li D, Wu P. One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv Funct Mater, 2015, 25: 1127–1136

    CAS  Google Scholar 

  53. Duan J, Chen S, Chambers B A, et al. 3D WS2 nanolayer-s@heteroatom-doped graphene films as hydrogen evolution catalyst electrodes. Adv Mater, 2015, 27: 4234–4241

    CAS  Google Scholar 

  54. Tributsch H, Bennett J C. Electrochemistry and photochemistry of MoS2 layer crystals. I. J Electroanal Chem Interfacial Electrochem, 1977, 81: 97–111

    CAS  Google Scholar 

  55. Hinnemann B, Moses P G, Bonde J, et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc, 2005, 127: 5308–5309

    CAS  Google Scholar 

  56. Jaramillo T F, Jorgensen K P, Bonde J, et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanoca-talysts. Science, 2007, 317: 100–102

    CAS  Google Scholar 

  57. Liu D, Xu W, Liu Q, et al. Unsaturated-sulfur-rich MoS2 nanosheets decorated on free-standing SWNT film: Synthesis, characterization and electrocatalytic application. Nano Res, 2016, 9: 2079–2087

    CAS  Google Scholar 

  58. Kong D, Wang H, Cha J J, et al. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. Nano Lett, 2013, 13: 1341–1347

    CAS  Google Scholar 

  59. Kibsgaard J, Chen Z, Reinecke B N, et al. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater, 2012, 11: 963–969

    CAS  Google Scholar 

  60. Wang Z, Li Q, Xu H, et al. Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy, 2018, 49: 634–643

    CAS  Google Scholar 

  61. Li H, Tsai C, Koh A L, et al. Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat Mater, 2016, 15: 48–53

    CAS  Google Scholar 

  62. Li H, Du M, Mleczko M J, et al. Kinetic study of hydrogen evolution reaction over strained MoS2 with sulfur vacancies using scanning electrochemical microscopy. J Am Chem Soc, 2016, 138: 5123–5129

    CAS  Google Scholar 

  63. Tsai C, Li H, Park S, et al. Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution. Nat Commun, 2017, 8: 15113

    Google Scholar 

  64. Li G, Zhang D, Qiao Q, et al. All the catalytic active sites of MoS2 for hydrogen evolution. J Am Chem Soc, 2016, 138: 16632–16638

    CAS  Google Scholar 

  65. Zhu J, Wang Z C, Dai H, et al. Boundary activated hydrogen evolution reaction on monolayer MoS2. Nat Commun, 2019, 10: 1348

    Google Scholar 

  66. Gao M R, Lin Z Y, Zhuang T T, et al. Mixed-solution synthesis of sea urchin-like NiSe nanofiber assemblies as economical Pt-free catalysts for electrochemical H2 production. J Mater Chem, 2012, 22: 13662

    CAS  Google Scholar 

  67. Zhou H, Yu F, Liu Y, et al. Outstanding hydrogen evolution reaction catalyzed by porous nickel diselenide electrocatalysts. Energy Environ Sci, 2017, 10: 1487–1492

    CAS  Google Scholar 

  68. Kong D, Wang H, Lu Z, et al. CoSe2 nanoparticles grown on carbon fiber paper: An efficient and stable electrocatalyst for hydrogen evolution reaction. J Am Chem Soc, 2014, 136: 4897–4900

    CAS  Google Scholar 

  69. Tsai C, Chan K, Abild-Pedersen F, et al. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: A density functional study. Phys Chem Chem Phys, 2014, 16: 13156–13164

    CAS  Google Scholar 

  70. Liu Z, Li N, Zhao H, et al. Colloidally synthesized MoSe2/gra-phene hybrid nanostructures as efficient electrocatalysts for hydrogen evolution. J Mater Chem A, 2015, 3: 19706–19710

    CAS  Google Scholar 

  71. Tang H, Dou K, Kaun C C, et al. MoSe2 nanosheets and their graphene hybrids: Synthesis, characterization and hydrogen evolution reaction studies. J Mater Chem A, 2014, 2: 360–364

    CAS  Google Scholar 

  72. Yin Y, Zhang Y, Gao T, et al. Synergistic phase and disorder engineering in lT-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv Mater, 2017, 29: 1700311

    Google Scholar 

  73. Peng X, Hu L, Wang L, et al. Vanadium carbide nanoparticles encapsulated in graphitic carbon network nanosheets: A high-efficiency electrocatalyst for hydrogen evolution reaction. Nano Energy, 2016, 26: 603–609

    CAS  Google Scholar 

  74. **ong W, Guo Q, Guo Z, et al. Atomic layer deposition of nickel carbide for supercapacitors and electrocatalytic hydrogen evolution. J Mater Chem A, 2018, 6: 4297–4304

    CAS  Google Scholar 

  75. Meyer S, Nikiforov A V, Petrushina I M, et al. Transition metal carbides (WC, Mo2C, TaC, NbC) as potential electrocatalysts for the hydrogen evolution reaction (HER) at medium temperatures. Int J Hydrogen Energy, 2015, 40: 2905–2911

    CAS  Google Scholar 

  76. Levy R B, Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis. Science, 1973, 181: 547–549

    CAS  Google Scholar 

  77. Bennett L H, Cuthill J R, McAlister A J, et al. Electronic structure and catalytic behavior of tungsten carbide. Science, 1974, 184: 563–565

    CAS  Google Scholar 

  78. Xu Y T, **ao X, Ye Z M, et al. Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electro-catalytic hydrogen evolution. J Am Chem Soc, 2017, 139: 5285–5288

    CAS  Google Scholar 

  79. Kim S K, Qiu Y, Zhang Y J, et al. Nanocomposites of transition-metal carbides on reduced graphite oxide as catalysts for the hydrogen evolution reaction. Appl Catal B-Environ, 2018, 235: 36–44

    CAS  Google Scholar 

  80. Ma R, Zhou Y, Chen Y, et al. Ultrafine molybdenum carbide nanoparticles composited with carbon as a highly active hydrogen-evolution electrocatalyst. Angew Chem Int Ed, 2015, 54: 14723–14727

    CAS  Google Scholar 

  81. Ko Y J, Cho J M, Kim I, et al. Tungsten carbide nanowalls as electrocatalyst for hydrogen evolution reaction: New approach to durability issue. Appl Catal B-Environ, 2017, 203: 684–691

    CAS  Google Scholar 

  82. Wu H B, **a B Y, Yu L, et al. Porous molybdenum carbide nano-octahedrons synthesized via confined carburization in metal-organic frameworks for efficient hydrogen production. Nat Commun, 2015, 6: 6512

    CAS  Google Scholar 

  83. Humagain G, MacDougal K, Maclnnis J, et al. Highly efficient, biochar-derived molybdenum carbide hydrogen evolution electrocatalyst. Adv Energy Mater, 2018, 8: 1801461

    Google Scholar 

  84. Ren B, Li D, ** Q, et al. A self-supported porous WN nanowire array: An efficient 3D electrocatalyst for the hydrogen evolution reaction. J Mater Chem A, 2017, 5: 19072–19078

    CAS  Google Scholar 

  85. **ng Z, Li Q, Wang D, et al. Self-supported nickel nitride as an efficient high-performance three-dimensional cathode for the alkaline hydrogen evolution reaction. Electrochim Acta, 2016, 191: 841–845

    CAS  Google Scholar 

  86. You B, Liu X, Hu G, et al. Universal surface engineering of transition metals for superior electrocatalytic hydrogen evolution in neutral water. J Am Chem Soc, 2017, 139: 12283–12290

    CAS  Google Scholar 

  87. **e J, Li S, Zhang X, et al. Atomically-thin molybdenum nitride nanosheets with exposed active surface sites for efficient hydrogen evolution. Chem Sci, 2014, 5: 4615–4620

    CAS  Google Scholar 

  88. Liang H W, Bruller S, Dong R, et al. Molecular metal-N, centres in porous carbon for electrocatalytic hydrogen evolution. Nat Commun, 2015, 6: 7992

    CAS  Google Scholar 

  89. Yu F, Zhou H, Zhu Z, et al. Three-dimensional nanoporous iron nitride film as an efficient electrocatalyst for water oxidation. ACS Catal, 2017, 7: 2052–2057

    CAS  Google Scholar 

  90. Yu L, Song S, McElhenny B, et al. A universal synthesis strategy to make metal nitride electrocatalysts for hydrogen evolution reaction. J Mater Chem A, 2019, 7: 19728–19732

    CAS  Google Scholar 

  91. Han Y, Yue X, ** Y, et al. Hydrogen evolution reaction in acidic media on single-crystalline titanium nitride nanowires as an efficient non-noble metal electrocatalyst. J Mater Chem A, 2016, 4: 3673–3677

    CAS  Google Scholar 

  92. Zhu Y, Chen G, Zhong Y, et al. Rationally designed hierarchically structured tungsten nitride and nitrogen-rich graphene-like carbon nanocomposite as efficient hydrogen evolution electrocatalyst. Adv Sci, 2018, 5: 1700603

    Google Scholar 

  93. Los P, Lasia A. Electrocatalytic properties of amorphous nickel boride electrodes for hydrogen evolution reaction in alkaline solution. J Electroanal Chem, 1992, 333: 115–125

    CAS  Google Scholar 

  94. Albert B, Hillebrecht H. Boron: Elementary challenge for experimenters and theoreticians. Angew Chem Int Ed, 2009, 48: 8640–8668

    CAS  Google Scholar 

  95. Masa J, Weide P, Peeters D, et al. Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution. Adv Energy Mater, 2016, 6: 1502313

    Google Scholar 

  96. Lu W, Liu T, **e L, et al. In situ derived Co-B nanoarray: A high-efficiency and durable 3D bifunctional electrocatalyst for overall alkaline water splitting. Small, 2017, 13: 1700805

    Google Scholar 

  97. Zhang P, Wang M, Yang Y, et al. Electroless plated Ni-B films as highly active electrocatalysts for hydrogen production from water over a wide pH range. Nano Energy, 2016, 19: 98–107

    CAS  Google Scholar 

  98. Vrubel H, Hu X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew Chem Int Ed, 2012, 51: 12703–12706

    CAS  Google Scholar 

  99. Park H, Encinas A, Scheifers J P, et al. Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction. Angew Chem Int Ed, 2017, 56: 5575–5578

    CAS  Google Scholar 

  100. Gupta S, Patel N, Fernandes R, et al. Co-Ni-B nanocatalyst for efficient hydrogen evolution reaction in wide pH range. Appl Catal B-Environ, 2016, 192: 126–133

    CAS  Google Scholar 

  101. Xu N, Cao G, Chen Z, et al. Cobalt nickel boride as an active electrocatalyst for water splitting. J Mater Chem A, 2017, 5: 12379–12384

    CAS  Google Scholar 

  102. Cao S, Tao F F, Tang Y, et al. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanoca-talysts. Chem Soc Rev, 2016, 45: 4747–4765

    CAS  Google Scholar 

  103. Pan Y, Liu Y, Zhao J, et al. Monodispersed nickel phosphide nanocrystals with different phases: Synthesis, characterization and electrocatalytic properties for hydrogen evolution. J Mater Chem A, 2015, 3: 1656–1665

    CAS  Google Scholar 

  104. Pan Y, Lin Y, Chen Y, et al. Cobalt phosphide-based electrocatalysts: Synthesis and phase catalytic activity comparison for hydrogen evolution. J Mater Chem A, 2016, 4: 4745–4754

    CAS  Google Scholar 

  105. Callejas J F, Read C G, Popczun E J, et al. Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP. Chem Mater, 2015, 27: 3769–3774

    CAS  Google Scholar 

  106. Yin Y, Han J, Zhang Y, et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets. J Am Chem Soc, 2016, 138: 7965–7972

    CAS  Google Scholar 

  107. Lukowski M A, Daniel A S, Meng F, et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc, 2013, 135: 10274–10277

    CAS  Google Scholar 

  108. Sun K, Liu Y, Pan Y, et al. Targeted bottom-up synthesis of 1T-phase MoS2 arrays with high electrocatalytic hydrogen evolution activity by simultaneous structure and morphology engineering. Nano Res, 2018, 11: 4368–4379

    CAS  Google Scholar 

  109. Yu X, Yu Z Y, Zhang X L, et al. “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities. J Am Chem Soc, 2019, 141: 7537–7543

    CAS  Google Scholar 

  110. Wang J, Yang Q, Wang M, et al. Rose petals with a novel and steady air bubble pinning effect in aqueous media. Soft Matter, 2012, 8: 2261–2266

    CAS  Google Scholar 

  111. Lu Z, Zhu W, Yu X, et al. Ultrahigh hydrogen evolution performance of under-water “Superaerophobic” MoS2 nanos-tructured electrodes. Adv Mater, 2014, 26: 2683–2687

    CAS  Google Scholar 

  112. Zhang J, Sui R, Xue Y, et al. Direct synthesis of parallel doped N-MoP/N-CNT as highly active hydrogen evolution reaction catalyst. Sci China Mater, 2019, 62: 690–698

    CAS  Google Scholar 

  113. Qu G, Wu T, Yu Y, et al. Rational design of phosphorus-doped cobalt sulfides electrocatalysts for hydrogen evolution. Nano Res, 2019, 12: 2960–2965

    CAS  Google Scholar 

  114. Wang D Y, Gong M, Chou H L, et al. Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets-carbon nano-tubes for hydrogen evolution reaction. J Am Chem Soc, 2015, 137: 1587–1592

    CAS  Google Scholar 

  115. Hou Y, Qiu M, Zhang T, et al. Ternary porous cobalt phospho-selenide nanosheets: An efficient electrocatalyst for electro-catalytic and photoelectrochemical water splitting. Adv Mater, 2017, 29: 1701589

    Google Scholar 

  116. Kibsgaard J, Jaramillo T F. Molybdenum phosphosulfide: An active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew Chem Int Ed, 2014, 53: 14433–14437

    CAS  Google Scholar 

  117. Caban-Acevedo M, Stone M L, Schmidt J R, et al. Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide. Nat Mater, 2015, 14: 1245–1251

    CAS  Google Scholar 

  118. Hong W, Jian C, Wang G, et al. Self-supported nanoporous cobalt phosphosulfate electrodes for efficient hydrogen evolution reaction. Appl Catal B-Environ, 2019, 251: 213–219

    CAS  Google Scholar 

  119. Chen Z, Song Y, Cai J, et al. Tailoring the d-band centers enables Co4N nanosheets to be highly active for hydrogen evolution catalysis. Angew Chem Int Ed, 2018, 57: 5076–5080

    CAS  Google Scholar 

  120. Pan Y, Sun K, Lin Y, et al. Electronic structure and d-band center control engineering over M-doped CoP (M =Ni, Mn, Fe) hollow polyhedron frames for boosting hydrogen production. Nano Energy, 2019, 56: 411–419

    CAS  Google Scholar 

  121. Tan C, Chen J, Wu X J, et al. Epitaxial growth of hybrid nanos-tructures. Nat Rev Mater, 2018, 3: 17089

    CAS  Google Scholar 

  122. Zhao G, Rui K, Dou S X, et al. Heterostructures for electrochemical hydrogen evolution reaction: A review. Adv Funct Mater, 2018, 28: 1803291

    Google Scholar 

  123. Lin Y, Sun K, Liu S, et al. Construction of CoP/NiCoP nano-tadpoles heterojunction interface for wide pH hydrogen evolution electrocatalysis and supercapacitor. Adv Energy Mater, 2019, 9: 1901213

    Google Scholar 

  124. Lin Y, Pan Y, Liu S, et al. Construction of multi-dimensional core/shell Ni/NiCoP nano-heterojunction for efficient electro-catalytic water splitting. Appl Catal B-Environ, 2019, 259: 118039

    CAS  Google Scholar 

  125. Wang P, Zhang X, Zhang J, et al. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis. Nat Commun, 2017, 8: 14580

    CAS  Google Scholar 

  126. Liu D, Li X, Chen S, et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat Energy, 2019, 4: 512–518

    CAS  Google Scholar 

  127. Zhang J, Zhao Y, Guo X, et al. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat Catal, 2018, 1: 985–992

    CAS  Google Scholar 

  128. Ye S, Luo F, Zhang Q, et al. Highly stable single Pt atomic sites anchored on aniline-stacked graphene for hydrogen evolution reaction. Energy Environ Sci, 2019, 12: 1000–1007

    CAS  Google Scholar 

  129. Zhang H, An P, Zhou W, et al. Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci Adv, 2018, 4: eaao6657

    Google Scholar 

  130. Zhang L, Han L, Liu H, et al. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew Chem Int Ed, 2017, 56: 13694–13698

    CAS  Google Scholar 

  131. Jiang K, Liu B, Luo M, et al. Single platinum atoms embedded in nanoporous cobalt selenide as electrocatalyst for accelerating hydrogen evolution reaction. Nat Commun, 2019, 10: 1743

    Google Scholar 

  132. Yang J, Chen B, Liu X, et al. Efficient and robust hydrogen evolution: Phosphorus nitride imide nanotubes as supports for anchoring single ruthenium sites. Angew Chem Int Ed, 2018, 57: 9495–9500

    CAS  Google Scholar 

  133. Ramalingam V, Varadhan P, Fu H C, et al. Heteroatom-mediated interactions between ruthenium single atoms and an MXene support for efficient hydrogen evolution. Adv Mater, 2019, 31: 1903841

    CAS  Google Scholar 

  134. Zhang L, Si R, Liu H, et al. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat Commun, 2019, 10: 4936

    Google Scholar 

  135. Lai W, Zhang L, Hua W, et al. General 7t-electron-assisted strategy for Ir, Pt, Ru, Pd, Fe, Ni single-atom electrocatalysts with bifunctional active sites for highly efficient water splitting. Angew Chem, 2019, 131: 11994–11999

    Google Scholar 

  136. Zhang L, Jia Y, Gao G, et al. Graphene defects trap atomic Ni species for hydrogen and oxygen evolution reactions. Chem, 2018, 4: 285–297

    CAS  Google Scholar 

  137. Li M, Duanmu K, Wan C, et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electro-catalysis. Nat Catal, 2019, 2: 495–503

    CAS  Google Scholar 

  138. Zhang H, Yu L, Chen T, et al. Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution. Adv Funct Mater, 2018, 28: 1807086

    Google Scholar 

  139. Ling C, Shi L, Ouyang Y, et al. Nanosheet supported single-metal atom bifunctional catalyst for overall water splitting. Nano Lett, 2017, 17: 5133–5139

    CAS  Google Scholar 

  140. Xue Y, Huang B, Yi Y, et al. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat Commun, 2018, 9: 1460

    Google Scholar 

  141. Pan Y, Liu S, Sun K, et al. A bimetallic Zn/Fe polyphthalocyanine-derived single-atom Fe-N4 catalytic site: A superior trifunctional catalyst for overall water splitting and Zn-air batteries. Angew Chem Int Ed, 2018, 57: 8614–8618

    CAS  Google Scholar 

  142. Fei H, Dong J, Arellano-Jimenez M J, et al. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun, 2015, 6: 8668

    CAS  Google Scholar 

  143. Fei H, Dong J, Wan C, et al. Microwave-assisted rapid synthesis of graphene-supported single atomic metals. Adv Mater, 2018, 30: 1802146

    Google Scholar 

  144. Sun T, Zhao S, Chen W, et al. Single-atomic cobalt sites embedded in hierarchically ordered porous nitrogen-doped carbon as a superior bifunctional electrocatalyst. Proc Natl Acad Sci USA, 2018, 115: 12692–12697

    CAS  Google Scholar 

  145. Chen W, Pei J, He C T, et al. Rational design of single molybdenum atoms anchored on N-doped carbon for effective hydrogen evolution reaction. Angew Chem Int Ed, 2017, 56: 16086–16090

    CAS  Google Scholar 

  146. Chen W, Pei J, He C T, et al. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv Mater, 2018, 30: 1800396

    Google Scholar 

  147. Zhao Y, Ling T, Chen S, et al. Non-metal single-iodine-atom electrocatalysts for the hydrogen evolution reaction. Angew Chem Int Ed, 2019, 58: 12252–12257

    CAS  Google Scholar 

  148. Cheng N, Stambula S, Wang D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat Commun, 2016, 7: 13638–13643

    CAS  Google Scholar 

  149. Yin X P, Wang H J, Tang S F, et al. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew Chem Int Ed, 2018, 57: 9382–9386

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2016YFA0202801, 2017YFA0700101 and 2018YFA0702003), the National Natural Science Foundation of China (21925202, 21872076 and 21890383), Bei**g Natural Science Foundation (JQ18007), the Fundamental Research Funds for the Central Universities (19CX02008A), the Petro China Innovation Foundation (2019D-5007-0401), Taishan Scholars Program of Shandong Province (tsqn201909065), and Tsinghua University Initiative Scientific Research Program.

Author information

Authors and Affiliations

Authors

Contributions

Author contributions Pan Y and Chen C wrote the manuscript. Zhang C and Lin Y revised the manuscript. Liu Z and Wang M drew the figures. Chen C supervised the project, directed the research and established the final version of the manuscript. All authors participated in the general discussion.

Corresponding author

Correspondence to Chen Chen  (陈晨).

Additional information

Conflict of interest

The authors declare no competing financial interests.

Yuan Pan received his PhD from the College of Chemical Engineering, China University of Petroleum (East China) in 2016. After postdoctoral work at Tsinghua University, he joined the College of Chemical Engineering at China University of Petroleum (East China) as an associate professor in 2019. His research interests focus on the design and synthesis of novel nanomaterials and single-atom materials for catalytic application.

Chen Chen received his BS degree from the Department of Chemistry, Bei**g Institute of Technology in 2006, and his PhD degree from the Department of Chemistry, Tsinghua University in 2011. After postdoctoral work at Lawrence Berkeley National Laboratory, he joined the Department of Chemistry at Tsinghua University as an associate professor in 2015. His research interests focus on nanomaterials and catalysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Zhang, C., Lin, Y. et al. Electrocatalyst engineering and structure-activity relationship in hydrogen evolution reaction: From nanostructures to single atoms. Sci. China Mater. 63, 921–948 (2020). https://doi.org/10.1007/s40843-019-1242-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-019-1242-1

Keywords

Navigation