Log in

Recent progress and future prospects of sodium-ion capacitors

钠离子混合电容器的研究进展和未来展望

  • Review
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

To satisfy the requirements for various electric systems and energy storage devices with both high energy density and power density as well as long lifespan, sodium-ion capacitors (SICs) consisting of battery anode and supercapacitor cathode, have attracted much attention due to the abundant resources and low cost of sodium source. SICs bridge the gap between the batteries and the supercapacitors, which can be used as competitive candidates for large-scale energy storage. In this review, the battery-type anode materials and the capacitor-type cathode materials are classified and introduced in detail. The advantages of various electrolytes including organic electrolytes, aqueous electrolytes and ion liquid electrolytes are also discussed sequentially. In addition, from the perspective of practical value, the presentations of the SICs at the current situation and the potential application in urban rail are displayed. Finally, the challenge, future research and prospects towards the SICs are put forward.

摘要

现代社会对电力系统和能源存储设备的能量密度、功率密 度和工作寿命提出了更高的要求. 为了满足这一需求, 电池型负极 和电容型**极组成的新型钠离子混合电容由于具有储备资源丰富 和价格低廉的特点, 引起了人们的广泛关注. 值得一提的是, 钠离子 混合电容在电池和超级电容器这两种储能方式之间起到了关键的 桥梁作用, 使其在未来的大规模储能领域具有**大竞争力. 本文对 电池型负极材料和电容型**极材料进行了细致的分类和介绍, 并 对有机系电解质、水系电解质和离子液体电解质等多种电解质的 特点进行了深入讨论. 此外, 我们对钠离子混合电容的应用现状及 其在城市轨道交通中的潜在应用做了详细讨论. 最后, 分析了钠离 子混合电容目前所面临的挑战, 并对其未来的发展方向作出了展 望.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu X, Yu M, Wang G, et al. Flexible solid-state supercapacitors: design, fabrication and applications. Energy Environ Sci, 2014, 7: 2160–2181

    Google Scholar 

  2. Lim E, Kim H, Jo C, et al. Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode. ACS Nano, 2014, 8: 8968–8978

    CAS  Google Scholar 

  3. Simon P, Gogotsi Y, Dunn B. Where do batteries end and supercapacitors begin? Science, 2014, 343: 1210–1211

    CAS  Google Scholar 

  4. Zuo W, Li R, Zhou C, et al. Battery-supercapacitor hybrid devices: recent progress and future prospects. Adv Sci, 2017, 4: 1600539

    Google Scholar 

  5. Kim H, Cho MY, Kim MH, et al. A novel high-energy hybrid supercapacitor with an anatase TiO2-reduced graphene oxide anode and an activated carbon cathode. Adv Energy Mater, 2013, 3: 1500–1506

    CAS  Google Scholar 

  6. Won JH, Jeong HM, Kang JK. Synthesis of nitrogen-rich nanotubes with internal compartments having open mesoporous channels and utilization to hybrid full-cell capacitors enabling high energy and power densities over robust cycle life. Adv Energy Mater, 2017, 7: 1601355

    Google Scholar 

  7. Zhang F, Zhang T, Yang X, et al. A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy Environ Sci, 2013, 6: 1623–1632

    CAS  Google Scholar 

  8. Wang F, Liu Z, Wang X, et al. A conductive polymer coated MoO3 anode enables an Al-ion capacitor with high performance. J Mater Chem A, 2016, 4: 5115–5123

    CAS  Google Scholar 

  9. Larcher D, Tarascon JM. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem, 2015, 7: 19–29

    CAS  Google Scholar 

  10. Yun YS, Cho SY, Shim J, et al. Microporous carbon nanoplates from regenerated silk proteins for supercapacitors. Adv Mater, 2013, 25: 1993–1998

    CAS  Google Scholar 

  11. Lee SW, Gallant BM, Byon HR, et al. Nanostructured carbon-based electrodes: bridging the gap between thin-film lithium-ion batteries and electrochemical capacitors. Energy Environ Sci, 2011, 4: 1972

    CAS  Google Scholar 

  12. Ma Y, Chang H, Zhang M, et al. Graphene-based materials for lithium-ion hybrid supercapacitors. Adv Mater, 2015, 27: 5296–5308

    CAS  Google Scholar 

  13. Li B, Dai F, **ao Q, et al. Activated carbon from biomass transfer for high-energy density lithium-ion supercapacitors. Adv Energy Mater, 2016, 6: 1600802

    Google Scholar 

  14. Yang M, Zhong Y, Ren J, et al. Fabrication of high-power Li-ion hybrid supercapacitors by enhancing the exterior surface charge storage. Adv Energy Mater, 2015, 5: 1500550

    Google Scholar 

  15. Aravindan V, Gnanaraj J, Lee YS, et al. Insertion-type electrodes for nonaqueous Li-ion capacitors. Chem Rev, 2014, 114: 11619–11635

    CAS  Google Scholar 

  16. Gu H, Zhu YE, Yang J, et al. Nanomaterials and technologies for lithium-ion hybrid supercapacitors. ChemNanoMat, 2016, 2: 578–587

    CAS  Google Scholar 

  17. Yu X, Zhan C, Lv R, et al. Ultrahigh-rate and high-density lithium-ion capacitors through hybriding nitrogen-enriched hierarchical porous carbon cathode with prelithiated microcrystalline graphite anode. Nano Energy, 2015, 15: 43–53

    CAS  Google Scholar 

  18. Puthusseri D, Aravindan V, Anothumakkool B, et al. From waste paper basket to solid state and Li-HEC ultracapacitor electrodes: A value added journey for shredded office paper. Small, 2014, 10: 4395–4402

    CAS  Google Scholar 

  19. Wang F, Wang C, Zhao Y, et al. A quasi-solid-state Li-ion capacitor based on porous TiO2 hollow microspheres wrapped with graphene nanosheets. Small, 2016, 12: 6207–6213

    CAS  Google Scholar 

  20. Slater MD, Kim D, Lee E, et al. Sodium-ion batteries. Adv Funct Mater, 2013, 23: 947–958

    CAS  Google Scholar 

  21. Ding J, Hu W, Paek E, et al. Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem Rev, 2018, 118: 6457–6498

    CAS  Google Scholar 

  22. Wang H, Zhu C, Chao D, et al. Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv Mater, 2017, 29: 1702093

    Google Scholar 

  23. Aravindan V, Ulaganathan M, Madhavi S. Research progress in Na-ion capacitors. J Mater Chem A, 2016, 4: 7538–7548

    CAS  Google Scholar 

  24. Li F, Zhou Z. Micro/nanostructured materials for sodium ion batteries and capacitors. Small, 2018, 14: 1702961

    Google Scholar 

  25. Zhu C, Yang P, Chao D, et al. Heterogeneous nanostructures for sodium ion batteries and supercapacitors. ChemNanoMat, 2015, 1: 458–476

    CAS  Google Scholar 

  26. Luo J, Fang C, ** C, et al. Tunable pseudocapacitance storage of MXene by cation pillaring for high performance sodium-ion capacitors. J Mater Chem A, 2018, 6: 7794–7806

    CAS  Google Scholar 

  27. Yun YS, Cho SY, Kim H, et al. Ultra-thin hollow carbon nanospheres for pseudocapacitive sodium-ion storage. ChemElectroChem, 2015, 2: 359–365

    CAS  Google Scholar 

  28. Kim NR, Yun YS, Song MY, et al. Citrus-peel-derived, nanoporous carbon nanosheets containing redox-active heteroatoms for sodium-ion storage. ACS Appl Mater Interfaces, 2016, 8: 3175–3181

    CAS  Google Scholar 

  29. Dong G, Wang H, Liu W, et al. Nitrate salt assisted fabrication of highly N-doped carbons for high-performance sodium ion capacitors. ACS Appl Energy Mater, 2018, acsaem.8b01166

  30. Park SK, Kwon SH, Lee SG, et al. 105 Cyclable pseudocapacitive Na-ion storage of hierarchically structured phosphorus-incorporating nanoporous carbons in organic electrolytes. ACS Energy Lett, 2018, 3: 724–732

    CAS  Google Scholar 

  31. Liu M, Niu J, Zhang Z, et al. Porous carbons with tailored heteroatom do** and well-defined porosity as high-performance electrodes for robust Na-ion capacitors. J Power Sources, 2019, 414: 68–75

    CAS  Google Scholar 

  32. Zou K, Cai P, Liu C, et al. A kinetically well-matched full-carbon sodium-ion capacitor. J Mater Chem A, 2019, 7: 13540–13549

    CAS  Google Scholar 

  33. Zou G, Hou H, Foster CW, et al. Advanced hierarchical vesicular carbon Co-doped with S, P, N for high-rate sodium storage. Adv Sci, 2018, 5: 1800241

    Google Scholar 

  34. Hou H, Banks CE, **g M, et al. Carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life. Adv Mater, 2015, 27: 7861–7866

    CAS  Google Scholar 

  35. Kuratani K, Yao M, Senoh H, et al. Na-ion capacitor using sodium pre-doped hard carbon and activated carbon. Electrochim Acta, 2012, 76: 320–325

    CAS  Google Scholar 

  36. Dall’Agnese Y, Taberna PL, Gogotsi Y, et al. Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors. J Phys Chem Lett, 2015, 6: 2305–2309

    Google Scholar 

  37. Li Z, Bommier C, Chong ZS, et al. Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom do**. Adv Energy Mater, 2017, 7: 1602894

    Google Scholar 

  38. Qiu S, **ao L, Sushko ML, et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv Energy Mater, 2017, 7: 1700403

    Google Scholar 

  39. Wang S, Wang R, Zhang Y, et al. Scalable and sustainable synthesis of carbon microspheres via a purification-free strategy for sodium-ion capacitors. J Power Sources, 2018, 379: 33–40

    CAS  Google Scholar 

  40. Han P, Han X, Yao J, et al. High energy density sodium-ion capacitors through co-intercalation mechanism in diglyme-based electrolyte system. J Power Sources, 2015, 297: 457–463

    CAS  Google Scholar 

  41. Karikalan N, Karuppiah C, Chen SM, et al. Three-dimensional fibrous network of Na0.21MnO2 for aqueous sodium-ion hybrid supercapacitors. Chem Eur J, 2017, 23: 2379–2386

    CAS  Google Scholar 

  42. Wang K, Wang N, He J, et al. Preparation of 3D architecture graphdiyne nanosheets for high-performance sodium-ion batteries and capacitors. ACS Appl Mater Interfaces, 2017, 9: 40604–40613

    CAS  Google Scholar 

  43. Wang H, Mitlin D, Ding J, et al. Excellent energy-power characteristics from a hybrid sodium ion capacitor based on identical carbon nanosheets in both electrodes. J Mater Chem A, 2016, 4: 5149–5158

    CAS  Google Scholar 

  44. Liu X, Wang H, Cui Y, et al. High-energy sodium-ion capacitor assembled by hierarchical porous carbon electrodes derived from enteromorpha. J Mater Sci, 2018, 53: 6763–6773

    CAS  Google Scholar 

  45. Chen Z, Augustyn V, Jia X, et al. High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano, 2012, 6: 4319–4327

    CAS  Google Scholar 

  46. Kiruthiga R, Nithya C, Karvembu R, et al. Reduced graphene oxide embedded V2O5 nanorods and porous honey carbon as high performance electrodes for hybrid sodium-ion supercapacitors. Electrochim Acta, 2017, 256: 221–231

    Google Scholar 

  47. Zhu K, Zhang H, Ye K, et al. Two-dimensional titanium carbide MXene as a capacitor-type electrode for rechargeable aqueous Li-ion and Na-ion capacitor batteries. ChemElectroChem, 2017, 4: 3018–3025

    CAS  Google Scholar 

  48. Ramakrishnan K, Nithya C, Karvembu R. High-performance sodium ion capacitor based on MoO2@rGO nanocomposite and goat hair derived carbon electrodes. ACS Appl Energy Mater, 2018, 1: 841–850

    CAS  Google Scholar 

  49. Lu K, Li D, Gao X, et al. An advanced aqueous sodium-ion supercapacitor with a manganous hexacyanoferrate cathode and a Fe3O4/rGO anode. J Mater Chem A, 2015, 3: 16013–16019

    CAS  Google Scholar 

  50. Li H, Zhu Y, Dong S, et al. Self-assembled Nb2O5 nanosheets for high energy-high power sodium ion capacitors. Chem Mater, 2016, 28: 5753–5760

    CAS  Google Scholar 

  51. Lim E, Jo C, Kim MS, et al. High-performance sodium-ion hybrid supercapacitor based on Nb2O5@carbon core-shell nanoparticles and reduced graphene oxide nanocomposites. Adv Funct Mater, 2016, 26: 3711–3719

    CAS  Google Scholar 

  52. Wang X, Li Q, Zhang L, et al. Caging Nb2O5 nanowires in PECVD-derived graphene capsules toward bendable sodium-ion hybrid supercapacitors. Adv Mater, 2018, 30: 1800963

    Google Scholar 

  53. Wu Y, Fan X, Gaddam RR, et al. Mesoporous niobium pentoxide/carbon composite electrodes for sodium-ion capacitors. J Power Sources, 2018, 408: 82–90

    CAS  Google Scholar 

  54. Le Z, Liu F, Nie P, et al. Pseudocapacitive sodium storage in mesoporous single-crystal-like TiO2-graphene nanocomposite enables high-performance sodium-ion capacitors. ACS Nano, 2017, 11: 2952–2960

    CAS  Google Scholar 

  55. Zhu YE, Yang L, Sheng J, et al. Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv Energy Mater, 2017, 7: 1701222

    Google Scholar 

  56. Babu B, Ullattil SG, Prasannachandran R, et al. Ti3+ induced brown TiO2 nanotubes for high performance sodium-ion hybrid capacitors. ACS Sustain Chem Eng, 2018, 6: 5401–5412

    CAS  Google Scholar 

  57. Gao L, Chen S, Zhang L, et al. High performance sodium ion hybrid supercapacitors based on Na2Ti3O7 nanosheet arrays. J Alloys Compd, 2018, 766: 284–290

    CAS  Google Scholar 

  58. Dong S, Shen L, Li H, et al. Flexible sodium-ion pseudocapacitors based on 3D Na2Ti3O7 nanosheet arrays/carbon textiles anodes. Adv Funct Mater, 2016, 26: 3703–3710

    CAS  Google Scholar 

  59. Yin J, Qi L, Wang H. Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors. ACS Appl Mater Interfaces, 2012, 4: 2762–2768

    CAS  Google Scholar 

  60. Dong S, Shen L, Li H, et al. Pseudocapacitive behaviours of Na2Ti3O7@CNT coaxial nanocables for high-performance sodium-ion capacitors. J Mater Chem A, 2015, 3: 21277–21283

    CAS  Google Scholar 

  61. Dong S, Wu L, Wang J, et al. Self-supported electrodes of Na2Ti3O7 nanoribbon array/graphene foam and graphene foam for quasi-solid-state Na-ion capacitors. J Mater Chem A, 2017, 5: 5806–5812

    CAS  Google Scholar 

  62. Li H, Peng L, Zhu Y, et al. Achieving high-energy-high-power density in a flexible quasi-solid-state sodium ion capacitor. Nano Lett, 2016, 16: 5938–5943

    CAS  Google Scholar 

  63. Qiu X, Zhang X, Fan LZ. In situ synthesis of a highly active Na2Ti3O7 nanosheet on an activated carbon fiber as an anode for high-energy density supercapacitors. J Mater Chem A, 2018, 6: 16186–16195

    CAS  Google Scholar 

  64. Wang C, ** Y, Wang M, et al. Carbon-modified Na2Ti3O7-2H2O nanobelts as redox active materials for high-performance supercapacitor. Nano Energy, 2016, 28: 115–123

    CAS  Google Scholar 

  65. Yang D, Sun X, Lim K, et al. Pre-sodiated nickel cobaltite for high-performance sodium-ion capacitors. J Power Sources, 2017, 362: 358–365

    CAS  Google Scholar 

  66. Ding R, Qi L, Wang H. An investigation of spinel NiCo2O4 as anode for Na-ion capacitors. Electrochim Acta, 2013, 114: 726–735

    CAS  Google Scholar 

  67. Wang YX, Chou SL, Wexler D, et al. High-performance sodium-ion batteries and sodium-ion pseudocapacitors based on MoS2/graphene composites. Chem Eur J, 2014, 20: 9607–9612

    CAS  Google Scholar 

  68. Chauhan H, Singh MK, Kumar P, et al. Development of SnS2/RGO nanosheet composite for cost-effective aqueous hybrid supercapacitors. Nanotechnology, 2017, 28: 025401

    Google Scholar 

  69. Wang R, Wang S, Peng X, et al. Elucidating the intercalation pseudocapacitance mechanism of MoS2-carbon monolayer interoverlapped superstructure: toward high-performance sodium-ion-based hybrid supercapacitor. ACS Appl Mater Interfaces, 2017, 9: 32745–32755

    CAS  Google Scholar 

  70. Zhao C, Yu C, Zhang M, et al. Enhanced sodium storage capability enabled by super wide-interlayer-spacing MoS2 integrated on carbon fibers. Nano Energy, 2017, 41: 66–74

    CAS  Google Scholar 

  71. Niu F, Yang J, Wang N, et al. MoSe2-covered N,P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv Funct Mater, 2017, 27: 1700522

    Google Scholar 

  72. Zhao X, Cai W, Yang Y, et al. MoSe2 nanosheets perpendicularly grown on graphene with Mo-C bonding for sodium-ion capacitors. Nano Energy, 2018, 47: 224–234

    CAS  Google Scholar 

  73. **a Z, Sun H, He X, et al. In situ construction of CoSe2@vertical-oriented graphene arrays as self-supporting electrodes for sodium-ion capacitors and electrocatalytic oxygen evolution. Nano Energy, 2019, 60: 385–393

    CAS  Google Scholar 

  74. Su Y, Zhitomirsky I. Asymmetric electrochemical supercapacitor, based on polypyrrole coated carbon nanotube electrodes. Appl Energy, 2015, 153: 48–55

    CAS  Google Scholar 

  75. Su Y, Zhitomirsky I. Hybrid MnO2/carbon nanotube-VN/carbon nanotube supercapacitors. J Power Sources, 2014, 267: 235–242

    CAS  Google Scholar 

  76. Dong J, Jiang Y, Li Q, et al. Pseudocapacitive titanium oxynitride mesoporous nanowires with iso-oriented nanocrystals for ultra-high-rate sodium ion hybrid capacitors. J Mater Chem A, 2017, 5: 10827–10835

    CAS  Google Scholar 

  77. Zhu C, Yang P, Chao D, et al. All metal nitrides solid-state asymmetric supercapacitors. Adv Mater, 2015, 27: 4566–4571

    CAS  Google Scholar 

  78. Dong S, Chen X, Gu L, et al. Facile preparation of mesoporous titanium nitride microspheres for electrochemical energy storage. ACS Appl Mater Interfaces, 2011, 3: 93–98

    CAS  Google Scholar 

  79. Wang Q, Wen Z, Li J. A hybrid supercapacitor fabricated with a carbon nanotube cathode and a TiO2-B nanowire anode. Adv Funct Mater, 2006, 16: 2141–2146

    CAS  Google Scholar 

  80. **e X, Zhao MQ, Anasori B, et al. Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices. Nano Energy, 2016, 26: 513–523

    CAS  Google Scholar 

  81. Wang X, Kajiyama S, Iinuma H, et al. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat Commun, 2015, 6: 6544

    CAS  Google Scholar 

  82. Kurra N, Alhabeb M, Maleski K, et al. Bistacked titanium carbide (MXene) anodes for hybrid sodium-ion capacitors. ACS Energy Lett, 2018, 3: 2094–2100

    CAS  Google Scholar 

  83. Chen S, Wu C, Shen L, et al. Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv Mater, 2017, 29: 1700431

    Google Scholar 

  84. Zhang S, Liu Y, Han Q, et al. Development and characterization of aqueous sodium-ion hybrid supercapacitor based on NaTi2-(PO4)3//activated carbon. J Alloys Compd, 2017, 729: 850–857

    CAS  Google Scholar 

  85. Phan TN, Gong MK, Thangavel R, et al. Ordered mesoporous carbon CMK-8 cathodes for high-power and long-cycle life sodium hybrid capacitors. J Alloys Compd, 2018, 743: 639–645

    CAS  Google Scholar 

  86. Jian Z, Raju V, Li Z, et al. A high-power symmetric Na-ion pseudocapacitor. Adv Funct Mater, 2015, 25: 5778–5785

    CAS  Google Scholar 

  87. Whitacre JF, Shanbhag S, Mohamed A, et al. A polyionic, large-format energy storage device using an aqueous electrolyte and thick-format composite NaTi2(PO4)3/activated carbon negative electrodes. Energy Tech, 2015, 3: 20–31

    CAS  Google Scholar 

  88. Wei T, Yang G, Wang C. Iso-oriented NaTi2(PO4)3 mesocrystals as anode material for high-energy and long-durability sodium-ion capacitor. ACS Appl Mater Interfaces, 2017, 9: 31861–31870

    CAS  Google Scholar 

  89. Thangavel R, Kaliyappan K, Kang K, et al. Going beyond lithium hybrid capacitors: Proposing a new high-performing sodium hybrid capacitor system for next-generation hybrid vehicles made with bio-inspired activated carbon. Adv Energy Mater, 2016, 6: 1502199

    Google Scholar 

  90. Thangavel R, Moorthy B, Kim DK, et al. Pushing the energy output and cyclability of sodium hybrid capacitors at high power to new limits. Adv Energy Mater, 2017, 7: 1602654

    Google Scholar 

  91. Wang R, Lang J, Zhang P, et al. Fast and large lithium storage in 3D porous VN nanowires-graphene composite as a superior anode toward high-performance hybrid supercapacitors. Adv Funct Mater, 2015, 25: 2270–2278

    CAS  Google Scholar 

  92. Karthikeyan K, Amaresh S, Kim KJ, et al. A high performance hybrid capacitor with Li2CoPO4F cathode and activated carbon anode. Nanoscale, 2013, 5: 5958–5964

    CAS  Google Scholar 

  93. Kaliyappan K, Amaresh S, Lee YS. LiMnBO3 nanobeads as an innovative anode material for high power lithium ion capacitor applications. ACS Appl Mater Interfaces, 2014, 6: 11357–11367

    CAS  Google Scholar 

  94. Du H, Yang H, Huang C, et al. Graphdiyne applied for lithiumion capacitors displaying high power and energy densities. Nano Energy, 2016, 22: 615–622

    CAS  Google Scholar 

  95. Lim E, Jo C, Kim H, et al. Facile synthesis of Nb2O5@carbon core-shell nanocrystals with controlled crystalline structure for high-power anodes in hybrid supercapacitors. ACS Nano, 2015, 9: 7497–7505

    CAS  Google Scholar 

  96. Kim H, Park KY, Hong J, et al. All-graphene-battery: bridging the gap between supercapacitors and lithium ion batteries. Sci Rep, 2014, 4: 5278

    CAS  Google Scholar 

  97. Yuan Y, Wang C, Lei K, et al. Sodium-ion hybrid capacitor of high power and energy density. ACS Cent Sci, 2018, 4: 1261–1265

    CAS  Google Scholar 

  98. Kim MS, Lim E, Kim S, et al. General synthesis of N-doped macroporous graphene-encapsulated mesoporous metal oxides and their application as new anode materials for sodium-ion hybrid supercapacitors. Adv Funct Mater, 2017, 27: 1603921

    Google Scholar 

  99. Wasiński K, Półrolniczak P, Walkowiak M. Proof-of-concept study of a new type sodium-ion hybrid electrochemical capacitor with organic electrolyte. Electrochim Acta, 2018, 259: 850–854

    Google Scholar 

  100. Fleischmann S, Widmaier M, Schreiber A, et al. High voltage asymmetric hybrid supercapacitors using lithium- and sodium-containing ionic liquids. Energy Storage Mater, 2019, 16: 391–399

    Google Scholar 

  101. Wang F, Wang X, Chang Z, et al. A quasi-solid-state sodium-ion capacitor with high energy density. Adv Mater, 2015, 27: 6962–6968

    CAS  Google Scholar 

  102. Ding J, Wang H, Li Z, et al. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energy Environ Sci, 2015, 8: 941–955

    CAS  Google Scholar 

  103. Song MY, Kim NR, Cho SY, et al. Asymmetric energy storage devices based on surface-driven sodium-ion storage. ACS Sustain Chem Eng, 2017, 5: 616–624

    CAS  Google Scholar 

  104. Wang P, Yang B, Zhang G, et al. Three-dimensional carbon framework as a promising anode material for high performance sodium ion storage devices. Chem Eng J, 2018, 353: 453–459

    CAS  Google Scholar 

  105. Ajuria J, Redondo E, Arnaiz M, et al. Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits. J Power Sources, 2017, 359: 17–26

    CAS  Google Scholar 

  106. Babu B, Shaijumon MM. High performance sodium-ion hybrid capacitor based on Na2Ti2O4(OH)2 nanostructures. J Power Sources, 2017, 353: 85–94

    CAS  Google Scholar 

  107. Cho SY, Yoon HJ, Kim NR, et al. Sodium-ion supercapacitors based on nanoporous pyroproteins containing redox-active heteroatoms. J Power Sources, 2016, 329: 536–545

    CAS  Google Scholar 

  108. Ding J, Li Z, Cui K, et al. Heteroatom enhanced sodium ion capacity and rate capability in a hydrogel derived carbon give record performance in a hybrid ion capacitor. Nano Energy, 2016, 23: 129–137

    CAS  Google Scholar 

  109. Phattharasupakun N, Wutthiprom J, Ma N, et al. Sodium-ion diffusion and charge transfer kinetics of sodium-ion hybrid capacitors using bio-derived hierarchical porous carbon. Electrochim Acta, 2018, 286: 55–64

    CAS  Google Scholar 

  110. Yu F, Liu Z, Zhou R, et al. Pseudocapacitance contribution in boron-doped graphite sheets for anion storage enables highperformance sodium-ion capacitors. Mater Horiz, 2018, 5: 529–535

    CAS  Google Scholar 

  111. Wang C, Wang F, Liu Z, et al. N-doped carbon hollow microspheres for metal-free quasi-solid-state full sodium-ion capacitors. Nano Energy, 2017, 41: 674–680

    CAS  Google Scholar 

  112. Yang B, Chen J, Lei S, et al. Spontaneous growth of 3D framework carbon from sodium citrate for high energy- and power-density and long-life sodium-ion hybrid capacitors. Adv Energy Mater, 2018, 8: 1702409

    Google Scholar 

  113. You Y, Wu XL, Yin YX, et al. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ Sci, 2014, 7: 1643–1647

    CAS  Google Scholar 

  114. Piernas-Muñoz MJ, Castillo-Martínez E, Gómez-Cámer JL, et al. Optimizing the electrolyte and binder composition for sodium Prussian blue, Na1−xFex+(1/3)(CN)6·yH2O, as cathode in sodium ion batteries. Electrochim Acta, 2016, 200: 123–130

    Google Scholar 

  115. Liu Y, Qiao Y, Zhang W, et al. Sodium storage in Na-rich NaxFeFe(CN)6 nanocubes. Nano Energy, 2015, 12: 386–393

    CAS  Google Scholar 

  116. Xu Y, Zheng S, Tang H, et al. Prussian blue and its derivatives as electrode materials for electrochemical energy storage. Energy Storage Mater, 2017, 9: 11–30

    Google Scholar 

  117. Lu K, Song B, Gao X, et al. High-energy cobalt hexacyanoferrate and carbon micro-spheres aqueous sodium-ion capacitors. J Power Sources, 2016, 303: 347–353

    CAS  Google Scholar 

  118. Zhao F, Wang Y, Xu X, et al. Cobalt hexacyanoferrate nanoparticles as a high-rate and ultra-stable supercapacitor electrode material. ACS Appl Mater Interfaces, 2014, 6: 11007–11012

    CAS  Google Scholar 

  119. Wang JG, Zhang Z, Zhang X, et al. Cation exchange formation of Prussian blue analogue submicroboxes for high-performance Na-ion hybrid supercapacitors. Nano Energy, 2017, 39: 647–653

    Google Scholar 

  120. Senthilkumar B, Sankar KV, Vasylechko L, et al. Synthesis and electrochemical performances of maricite-NaMPO4 (M = Ni, Co, Mn) electrodes for hybrid supercapacitors. RSC Adv, 2014, 4: 53192–53200

    CAS  Google Scholar 

  121. Sundaram MM, Watcharatharapong T, Chakraborty S, et al. Synthesis, and crystal and electronic structure of sodium metal phosphate for use as a hybrid capacitor in non-aqueous electrolyte. Dalton Trans, 2015, 44: 20108–20120

    CAS  Google Scholar 

  122. Béguin F, Presser V, Balducci A, et al. Carbons and electrolytes for advanced supercapacitors. Adv Mater, 2014, 26: 2219–2251

    Google Scholar 

  123. Usui H, Domi Y, Shimizu M, et al. Niobium-doped titanium oxide anode and ionic liquid electrolyte for a safe sodium-ion battery. J Power Sources, 2016, 329: 428–431

    CAS  Google Scholar 

  124. Zhang Y, Nie P, Xu C, et al. High energy aqueous sodium-ion capacitor enabled by polyimide electrode and high-concentrated electrolyte. Electrochim Acta, 2018, 268: 512–519

    CAS  Google Scholar 

  125. Bae KL, Kim K. Flexible sodium-ion supercapacitor based on polypyrrole/carbon electrode by use of harmless aqueous electrolyte for wearable devices. Int J Energy Res, 2017, 41: 1335–1341

    CAS  Google Scholar 

  126. **ong Q, Zheng C, Chi H, et al. Reconstruction of TiO2/MnO2-C nanotube/nanoflake core/shell arrays as high-performance supercapacitor electrodes. Nanotechnology, 2017, 28: 055405

    Google Scholar 

  127. Lee J, Kim S, Kim C, et al. Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy Environ Sci, 2014, 7: 3683–3689

    CAS  Google Scholar 

  128. Forsyth M, Yoon H, Chen F, et al. Novel Na+ ion diffusion mechanism in mixed organic-inorganic ionic liquid electrolyte leading to high Na+ transference number and stable, high rate electrochemical cycling of sodium cells. J Phys Chem C, 2016, 120: 4276–4286

    CAS  Google Scholar 

  129. Mendes TC, Zhou F, Barlow AJ, et al. An ionic liquid based sodium metal-hybrid supercapacitor-battery. Sustain Energy Fuels, 2018, 2: 763–771

    CAS  Google Scholar 

  130. Xu Z, **e F, Wang J, et al. All-cellulose-based quasi-solid-state sodium-ion hybrid capacitors enabled by structural hierarchy. Adv Funct Mater, 2019, 334: 1903895

    Google Scholar 

  131. Wang Z, Li H, Tang Z, et al. Hydrogel electrolytes for flexible aqueous energy storage devices. Adv Funct Mater, 2018, 28: 1804560

    Google Scholar 

  132. Wang D, Li H, Liu Z, et al. A nanofibrillated cellulose/polyacrylamide electrolyte-based flexible and sewable high-performance Zn-MnO2 battery with superior shear resistance. Small, 2018, 14: 1803978

    Google Scholar 

  133. González-Gil A, Palacin R, Batty P. Sustainable urban rail systems: Strategies and technologies for optimal management of regenerative braking energy. Energy Convers Manage, 2013, 75: 374–388

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51672308, 51972025 and 61888102).

Author information

Authors and Affiliations

Authors

Contributions

The paper was written with contributions from all authors. All authors have given approval to the final version of the paper.

Corresponding authors

Correspondence to Guozhen Shen  (沈国震) or Di Chen  (陈娣).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Rui Jia received her BE degree in 2015 from Huaqiao University and ME degree in 2018 from Qingdao University. She is a PhD candidate at the College of Mathematics and Physics, University of Science and Technology Bei**g. Her research interests mainly focus on sodium-ion batteries and hybrid supercapacitors.

Guozhen Shen received his BSc degree (1999) in chemistry from Anhui Normal University and PhD degree (2003) in chemistry from the University of Science and technology of China. He joined the Institute of Semiconductors, Chinese Academy of Sciences as a Professor in 2013. His current research focuses on flexible electronics and printable electronics, including transistors, photodetectors, sensors and flexible energy storage and conversion devices.

Di Chen received her BSc degree (1999) in chemistry from Anhui Normal University and PhD degree (2005) in chemistry from the University of Science and technology of China. She joined the University of Science and Technology Bei**g as a Professor in 2014. Her current research focuses on energy storage materials and devices.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, R., Shen, G. & Chen, D. Recent progress and future prospects of sodium-ion capacitors. Sci. China Mater. 63, 185–206 (2020). https://doi.org/10.1007/s40843-019-1188-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-019-1188-x

Keywords

Navigation