Log in

Increasing Iron Recovery from High-Iron Red Mud by Surface Magnetization

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

Economical recovery of iron from high-iron red mud will benefit the comprehensive utilization of the mud, but current practice is restricted by poor magnetism and mutual embeddedness of ultrafine iron-bearing minerals. This work determined the effect of surface magnetization on iron recovery from ultrafine goethite and red mud by magnetic separation. Surface magnetization was carried out on ultrafine goethite with poor magnetism. Increasing the temperature and NaOH concentration remarkably improved the iron recovery, whereas prolonging magnetization time reduced the iron recovery. For high-iron red mud, the total iron (TFe) content in concentrates and iron recovery initially increased and then decreased with increasing NaOH concentration and FeSO4 concentration. Coarse red mud was beneficial to increasing the TFe content and iron recovery after surface magnetization. A 28.52% iron recovery efficiency with 40.90% TFe was achieved in the concentrate without surface magnetization, whereas a 66.02% iron recovery efficiency with 56.7 wt% TFe was obtained in the concentrate by magnetic separation under surface magnetization conditions of 0.6 mol/L NaOH and 0.02 mol/L Fe2+ at 80 °C for 10 min. The increased iron recovery and TFe in the concentrate after magnetic separation was mainly attributed to the formation of magnetite Fe3O4 on the surface of iron-bearing minerals during surface magnetization.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Carneiro J, Tobaldi DM, Hajjaji W et al (2018) Red mud as a substitute coloring agent for the hematite pigment. Ceram Int 44:4211–4219. https://doi.org/10.1016/j.ceramint.2017.11.225

    Article  CAS  Google Scholar 

  2. Gräfe M, Power G, Klauber C (2011) Bauxite residue issues: III alkalinity and associated chemistry. Hydrometallurgy 108:60–79. https://doi.org/10.1016/j.hydromet.2011.02.004

    Article  CAS  Google Scholar 

  3. Khairul MA, Zanganeh J, Moghtaderi B (2019) The composition, recycling and utilisation of Bayer red mud. Resour Conserv Recy 141:483–498. https://doi.org/10.1016/j.resconrec.2018.11.006

    Article  Google Scholar 

  4. Khaitan S, Dzombak DA, Lowry GV (2009) Chemistry of the acid neutralization capacity of bauxite residue. Environ Eng Sci 26:873–881. https://doi.org/10.1089/ees.2007.0228

    Article  CAS  Google Scholar 

  5. Liu YJ, Naidu R, Ming H (2013) Surface electrochemical properties of red mud (bauxite residue): zeta potential and surface charge density. J Colloid Interface Sci 394:451–457. https://doi.org/10.1016/j.jcis.2012.11.052

    Article  CAS  Google Scholar 

  6. Mayes WM, Burke IT, Gomes HI et al (2016) Advances in understanding environmental risks of red mud after the Ajka Spill, Hungary. J Sustain Metall 2:332–343. https://doi.org/10.1007/s40831-016-0050-z

    Article  Google Scholar 

  7. Xue SG, Zhu F, Kong XF et al (2016) A review of the characterization and revegetation of bauxite residues (red mud). Environ Sci Pollut Res Int 23:1120–1132. https://doi.org/10.1007/s11356-015-4558-8

    Article  CAS  Google Scholar 

  8. Wang R, Liu ZG, Chu MS et al (2018) Modeling assessment of recovering iron from red mud by direct reduction: magnetic separation based on response surface methodology. J Iron Steel Res Int 25:497–505. https://doi.org/10.1007/s42243-018-0063-x

    Article  Google Scholar 

  9. Chun TJ, Zhu DQ, Pan J et al (2013) Preparation of metallic iron powder from red mud by sodium salt roasting and magnetic separation. Can Metall Quart 53:183–189. https://doi.org/10.1179/1879139513y.0000000114

    Article  Google Scholar 

  10. Zhu DQ, Chun TJ, Pan J et al (2012) Recovery of iron from high-iron red mud by reduction roasting with adding sodium salt. J Iron Steel Res Int 19:1–5. https://doi.org/10.1016/s1006-706x(12)60131-9

    Article  Google Scholar 

  11. Agrawal S, Rayapudi V, Dhawan N (2018) Microwave reduction of red mud for recovery of iron values. J Sustain Metall 4:427–436. https://doi.org/10.1007/s40831-018-0183-3

    Article  Google Scholar 

  12. Agrawal S, Rayapudi V, Dhawan N (2019) Comparison of microwave and conventional carbothermal reduction of red mud for recovery of iron values. Miner Eng 132:202–210. https://doi.org/10.1016/j.mineng.2018.12.012

    Article  CAS  Google Scholar 

  13. Liu X, Gao P, Yuan S et al (2020) Clean utilization of high-iron red mud by suspension magnetization roasting. Miner Eng 157:106553. https://doi.org/10.1016/j.mineng.2020.106553

    Article  CAS  Google Scholar 

  14. Zinoveev D, Grudinsky P, Zakunov A et al (2019) Influence of Na2CO3 and K2CO3 addition on iron grain growth during carbothermic reduction of red mud. Metals 9:1313. https://doi.org/10.3390/met9121313

    Article  CAS  Google Scholar 

  15. Wan JY, Chen TJ, Zhou XL et al (2021) Efficient improvement for the direct reduction of high-iron red mud by co-reduction with high-manganese iron ore. Miner Eng 174:107024. https://doi.org/10.1016/j.mineng.2021.107024

    Article  CAS  Google Scholar 

  16. Maihatchi Ahamed A, Pons MN, Ricoux Q et al (2020) Production of electrolytic iron from red mud in alkaline media. J Environ Manag 266:110547. https://doi.org/10.1016/j.jenvman.2020.110547

    Article  CAS  Google Scholar 

  17. Gao F, Zhang JH, Deng XJ et al (2019) Comprehensive recovery of iron and aluminum from ordinary bayer red mud by reductive sintering-magnetic separation–digesting process. JOM 71:2936–2943. https://doi.org/10.1007/s11837-018-3311-4

    Article  CAS  Google Scholar 

  18. Shoppert A, Valeev D, Diallo MM et al (2022) High-iron bauxite residue (red mud) valorization using hydrochemical conversion of goethite to magnetite. Materials 15:8423. https://doi.org/10.3390/ma15238423

    Article  CAS  Google Scholar 

  19. Cardenia C, Balomenos E, Panias D (2019) Iron recovery from bauxite residue through reductive roasting and wet magnetic separation. J Sustain Metall 5:9–19. https://doi.org/10.1007/s40831-018-0181-5

    Article  Google Scholar 

  20. Yang Y, Wang XW, Wang MY et al (2015) Recovery of iron from red mud by selective leach with oxalic acid. Hydrometallurgy 157:239–245. https://doi.org/10.1016/j.hydromet.2015.08.021

    Article  CAS  Google Scholar 

  21. Yu ZL, Shi ZX, Chen YM et al (2012) Red-mud treatment using oxalic acid by UV irradiation assistance. Trans Nonferr Metal Soc 22:456–460. https://doi.org/10.1016/s1003-6326(11)61198-9

    Article  CAS  Google Scholar 

  22. Li YR, Wang J, Wang XJ et al (2011) Feasibility study of iron mineral separation from red mud by high gradient superconducting magnetic separation. Physica C 471:91–96. https://doi.org/10.1016/j.physc.2010.12.003

    Article  CAS  Google Scholar 

  23. Li YR, Chen HS, Wang J et al (2014) Research on red mud treatment by a circulating superconducting magnetic separator. Environ Technol 35:1243–1249. https://doi.org/10.1080/09593330.2013.865763

    Article  CAS  Google Scholar 

  24. Wang HM, Wang YY, ** H et al (2022) Transformation behavior of iron minerals in high-iron red mud during high-pressure hydrothermal reduction. Bull Environ Contam Toxicol 109:76–85. https://doi.org/10.1007/s00128-022-03496-5

    Article  CAS  Google Scholar 

  25. Dong WQ, Liang K, Qin YY et al (2019) Hydrothermal conversion of red mud into magnetic adsorbent for effective adsorption of Zn(II) in water. Appl Sci-basel 9:1519. https://doi.org/10.3390/app9081519

    Article  CAS  Google Scholar 

  26. Handler RM, Beard BL, Johnson CM et al (2009) Atom exchange between aqueous Fe(II) and goethite: an Fe isotope tracer study. Environ Sci Technol 43:1102–1107. https://doi.org/10.1021/es802402m

    Article  CAS  Google Scholar 

  27. Li YJ, Yang ZM, Chen YC et al (2019) Adsorption, recovery, and regeneration of Cd by magnetic phosphate nanoparticles. Environ Sci Pollut R 26:17321–17332. https://doi.org/10.1007/s11356-019-05081-6

    Article  CAS  Google Scholar 

  28. Wang GX, Yan YK, Wu GY et al (2012) Determination of iron in iron ore by inductively coupled plasma atomic emision spectrometry. Chem World 53:651–653. https://doi.org/10.19500/j.cnki.0367-6358.2012.11.004

    Article  CAS  Google Scholar 

  29. Li XB, Zhou ZY, Wang YL et al (2020) Enrichment and separation of iron minerals in gibbsitic bauxite residue based on reductive Bayer digestion. Trans Nonferr Metal Soc 30:1980–1990. https://doi.org/10.1016/s1003-6326(20)65355-9

    Article  CAS  Google Scholar 

  30. Liu X, Han YX, He FY et al (2021) Characteristic, hazard and iron recovery technology of red mud—a critical review. J Hazard Mater 420:126542. https://doi.org/10.1016/j.jhazmat.2021.126542

    Article  CAS  Google Scholar 

  31. Yue T, Xu ZH, Hu YH et al (2018) Magnetic separation and recycling of goethite and calcium sulfate in zinc hydrometallurgy in the presence of maghemite fine particles. ACS Sustain Chem Eng 6:1532–1538. https://doi.org/10.1021/acssuschemeng.7b03856

    Article  CAS  Google Scholar 

  32. Gupta VK, Sharma S (2002) Removal of cadmium and zinc from aqueous solutions using red mud. Environ Sci Technol 36:3612–3617. https://doi.org/10.1021/es020010v

    Article  CAS  Google Scholar 

  33. Notini L, Latta DE, Neumann A et al (2019) A closer look at Fe(II) passivation of goethite. ACS Earth Space Chem 3:2717–2725. https://doi.org/10.1021/acsearthspacechem.9b00224

    Article  CAS  Google Scholar 

  34. Suppiah DD, Abd Hamid SB (2016) One step facile synthesis of ferromagnetic magnetite nanoparticles. J Magn Magn Mater 414:204–208. https://doi.org/10.1016/j.jmmm.2016.04.072

    Article  CAS  Google Scholar 

  35. Hu TY, Sun TC, Kou J et al (2017) Recovering titanium and iron by co-reduction roasting of seaside titanomagnetite and blast furnace dust. Int J Miner Process 165:28–33. https://doi.org/10.1016/j.minpro.2017.06.003

    Article  CAS  Google Scholar 

  36. Li XB, Liu N, Qi TG et al (2015) Conversion of ferric oxide to magnetite by hydrothermal reduction in Bayer digestion process. T Nonferr Metal Soc 25:3467–3474. https://doi.org/10.1016/s1003-6326(15)63984-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China for the project support (51874366).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guihua Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

The contributing editor for this article was Grace Ofori-Sarpong.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, X., Liu, G., Qi, T. et al. Increasing Iron Recovery from High-Iron Red Mud by Surface Magnetization. J. Sustain. Metall. 9, 795–805 (2023). https://doi.org/10.1007/s40831-023-00686-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-023-00686-1

Keywords

Navigation