Log in

Tantalum Metal Production Through High-Efficiency Electrochemical Reduction of TaS2 in Molten CaCl2

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

The electro-calciothermic reduction of tantalum sulfide (TaS2) was applied to open a new pathway for producing high-purity Ta powders applicable for tantalum electrolytic capacitors. The supplied electric charge was varied to electrochemically reduce the sulfide at 900 °C using Ca in molten CaCl2xCaS (x = 0.1, 0.5 mol%) salts. The cleaner TaS2 could also be prepared via the highly efficient carbo-sulfidation of Ta2O5 using S2 gas. The plate-like Ta particles with internal voids and coral structures were obtained through the electrochemical reduction of the sulfides. Sulfur removal was achieved rapidly from TaS2. Ta powder with 0.08 mass% O and 0.01 mass% S was successfully produced from Ta2O5 via clean TaS2. It was obtained by increasing the electric charge to two times higher than that required to generate the stoichiometric amount of Ca in the CaCl2 melt. Therefore, the electrometallurgical reduction of TaS2 could be a promising, cost-effective, and sustainable approach for producing high-purity Ta powders.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Buckman RW (2000) New applications for tantalum and tantalum alloys. JOM 52:40–41

    CAS  Google Scholar 

  2. de Brito RA, Medeiros FFP, Gomes UU, Costa FA, Silva AGP, Alves C (2008) Production of tantalum by aluminothermic reduction in plasma reactor. Int J Refract Met Hard Mater 26:433–437

    Google Scholar 

  3. Baba M, Suzuki RO (2005) Dielectric properties of tantalum powder with broccoli-like morphology. J Alloys Compd 392:225–230

    CAS  Google Scholar 

  4. Baba M, Ono Y, Suzuki RO (2005) Tantalum and niobium powder preparation from their oxides by calciothermic reduction in the molten CaCl2. J Phys Chem Solids 66:466–470

    CAS  Google Scholar 

  5. Suzuki RO, Baba M, Ono Y, Yamamoto K (2005) Formation of broccoli-like morphology of tantalum powder. J Alloys Compd 389:310–316

    CAS  Google Scholar 

  6. Niu B, Chen Z, Xu Z (2017) Recovery of tantalum from waste tantalum capacitors by supercritical water treatment. ACS Sustain Chem 5:4421–4428

    CAS  Google Scholar 

  7. Zhou Y-L, Niinomi M, Akahori T, Nakai M, Fukui H (2007) Comparison of various properties between titanium-tantalum alloy and pure titanium for biomedical applications. Mater Trans 48:380–384

    CAS  Google Scholar 

  8. Huang S, Sing SL, de Looze G, Wilson R, Yeong WY (2020) Laser powder bed fusion of titanium-tantalum alloys: compositions and designs for biomedical applications. J Mech Behav Biomed Mater 108:103775

    CAS  Google Scholar 

  9. Balagna C, Faga MG, Spriano S (2011) Tantalum-based thin film coatings for wear resistant arthroprostheses. J Nanosci Nanotechnol 11:8994–9002

    CAS  Google Scholar 

  10. Manso AP, Marzo FF, Garicano X, Alegre C, Lozano A, Barreras F (2020) Corrosion behavior of tantalum coatings on AISI 316L stainless steel substrate for bipolar plates of PEM fuel cells. Int J Hydrog Energy 45:20679–20691

    CAS  Google Scholar 

  11. Rosenberg H, Bahri O, Wang G, LaRue W (2005) Tantalum sputtering target and method of manufacture, United States Patent, US 6,955,938 B2

  12. Cardonne SM, Kumar P, Michaluk CA, Schwartz HD (1995) Tantalum and its alloys. Int J Refract Met Hard Mater 13:187–194

    CAS  Google Scholar 

  13. Köck W, Paschen P (1989) Tantalum—processing, properties and applications. JOM 41:33–39

    Google Scholar 

  14. Okabe TH, Sato N, Mitsuda Y, Ono S (2003) Production of tantalum powder by magnesiothermic reduction of feed preform. Mater Trans 44:2646–2653

    CAS  Google Scholar 

  15. Mineta K, Okabe TH (2005) Development of a recycling process for tantalum from capacitor scraps. J Phys Chem Solids 66:318–321

    CAS  Google Scholar 

  16. Reynolds C (2016) Tantalum capacitor technology options for high temperature and harsh environment applications. Addit Conf (Device Pakag, HiTEC, HiTEN, and CICMT). https://doi.org/10.4071/2016-HITEC-299

    Article  Google Scholar 

  17. Suzuki RO, Ishii R, Nishiyama T, Iijima H (2003) Powdered tantalum, niobium, production process thereof and porous sintered body and solid electrolytic capacitor using the powdered tantalum or niobium, United States Patent, US 2003/0206390 A1

  18. Yang G, Zheng A, Cheng Y, Ma Y (2016) Method for preparing tantalum powder of capacitor grade with high nitrogen content, tantalum powder of capacitor grade prepared by the process, and an anode and a capacitor made of the tantalum powder, United States Patent, 0059319 A1

  19. Yuan B, Okabe TH (2007) Production of fine tantalum powder by electrochemical method. Mater Trans 48:2687–2694

    CAS  Google Scholar 

  20. Hwang S-M, Wang J-P, Lee D-W (2019) Extraction of tantalum powder via the magnesium reduction of tantalum pentoxide. Metals 9:205

    CAS  Google Scholar 

  21. Barnett R, Kilby KT, Fray DJ (2009) Reduction of tantalum pentoxide using graphite and tin-oxide-based anodes via the FFC-Cambridge Process. Metall Mater Trans B 40:150–157

    Google Scholar 

  22. Yan XY, Fray DJ (2011) Using electro-deoxidation to synthesize niobium sponge from solid Nb2O5 in alkali–alkaline-earth metal chloride melts. J Mater Res 18:346–356

    Google Scholar 

  23. Barnett RP, Fray DJ (2013) Reaction of tantalum oxide with calcium chloride–calcium oxide melts. J Mater Sci 48:2581–2589

    CAS  Google Scholar 

  24. Garg SP, Krishnamurthy N, Awasthi A, Venkatraman M (1996) The O-Ta (oxygen-tantalum) system. J Phase Equilib 17:63–77

    CAS  Google Scholar 

  25. Suzuki N, Tanaka M, Noguchi H, Natsui S, Kikuchi T, Suzuki RO (2017) Calcium reduction of TiS2 in CaCl2 melt. Mater Trans 58:367–370

    CAS  Google Scholar 

  26. Ahmadi E, Suzuki RO (2020) An innovative process for production of Ti metal powder via TiSx from TiN. Metall Mater Trans B 51:140–148

    CAS  Google Scholar 

  27. Ahmadi E, Suzuki RO, Kikuchi T, Kaneko T, Yashima Y (2020) Towards a sustainable technology for production of extra-pure Ti metal: electrolysis of sulfurized Ti(C, N) in molten CaCl2. Int J Miner Metall Mater 27:1635–1643

    CAS  Google Scholar 

  28. Ono K, Suzuki RO (2002) A new concept for producing Ti sponge: calciothermic reduction. JOM 54:59–61

    CAS  Google Scholar 

  29. Suzuki RO, Yashima Y, Suzuki N, Ahmadi E, Natsui S, Kikuchi T (2020) Titanium production via titanium sulfide. MATEC Web Conf 321:07003

    CAS  Google Scholar 

  30. Kaneko T, Yashima Y, Ahmadi E, Natsui S, Suzuki RO (2020) Synthesis of Sc sulfides by CS2 sulfurization. J Solid State Chem 285:121268

    CAS  Google Scholar 

  31. Ahmadi E, Yashima Y, Suzuki RO, Rezan SA (2018) Formation of titanium sulfide from titanium oxycarbonitride by CS2 gas. Metall Mater Trans B 49:1808–1821

    CAS  Google Scholar 

  32. Tsai C-H, Lee W-J, Chen C-Y, Liao W-T, Shih M (2002) Formation of solid sulfur by decomposition of carbon disulfide in the oxygen-lean cold plasma environment. Ind Eng Chem Res 41:1412–1418

    CAS  Google Scholar 

  33. Roine A, Kobylin P (2014) Outokumpu HSC Chemistry for Windows, Chemical reaction and equilibrium software with extensive thermochemical database. Outotec Research Center, Pori, Finland, HSC Ver. 8.08

  34. Wu C, Tan M, Ye G, Fray DJ, ** X (2019) High-efficiency preparation of titanium through electrolysis of carbo-sulfurized titanium dioxide. ACS Sustain Chem Eng 7:8340–8346

    CAS  Google Scholar 

  35. Matsuzaki T, Suzuki RO, Natsui S, Kikuchi T, Ueda M (2019) Solubility of CaS in molten CaCl2. Mater Trans 60:386–390

    CAS  Google Scholar 

  36. Suzuki RO, Natsui S, Kikuchi T (2020) OS process: calciothermic reduction of TiO2 via CaO electrolysis in molten CaCl2. In: Fang ZZ, Froes FH, Zhang Y (eds) Extractive metallurgy of titanium: conventional and recent advances in extraction and production of titanium metal, 1st edn. Elsevier, Amsterdam, pp 287–313

    Google Scholar 

  37. Ahmadi E, Suzuki RO, Kaneko T, Kikuchi T (2020) A sustainable approach for producing Ti and TiS2 from TiC. Metall Mater Trans B 52:77–87. https://doi.org/10.1007/s11663-020-01988-5

    Article  CAS  Google Scholar 

  38. Spijkerman A, de Boer JL, Meetsma A, Wiegers GA, Smaalen SV (1997) X-ray crystal-structure refinement of the nearly commensurate phase of 1T-TaS2 in (3+2)-dimensional superspace. Phys Rev B 56:13757–13767

    CAS  Google Scholar 

  39. Luxa J, Mazánek V, Pumera M, Lazar P, Sedmidubský D, Callisti M, Polcar T, Sofer Z (2017) 2H→1T phase engineering of layered tantalum disulfides in electrocatalysis: oxygen reduction reaction. Chem Eur J 23:8082–8091

    CAS  Google Scholar 

  40. Sohn HY, Szekely J (1972) A structural model for gas-solid reactions with a moving boundary—III: a general dimensionless representation of the irreversible reaction between a porous solid and a reactant gas. Chem Eng Sci 27:763–778

    CAS  Google Scholar 

  41. Franzen HF, Smeggil JG (1969) The crystal structure of Ta2S. Acta Cryst B25:1736–1741

    Google Scholar 

  42. Franzen HF, Smeggil JG (1970) The crystal structure of Ta6S. Acta Cryst B26:125–129

    Google Scholar 

  43. Wada H, Onoda M (1989) On the preparation and structure of the compound Ta3S1.8. Mater Res Bull 24:191–196

    CAS  Google Scholar 

  44. Haraguchi Y, Shibuya R, Natsui S, Kikuchi T, Suzuki RO (2019) Gas generation reactions during TiO2 reduction using molten salt. J Japan Inst Met Mater 83:441–448

    CAS  Google Scholar 

  45. Suzuki RO, Ono K, Teranuma K (2003) Calciothermic reduction of titanium oxide and in-situ electrolysis in molten CaCl2. Metall Mater Trans B 34:287–295

    Google Scholar 

  46. Gill J (2020) Technical information, basic tantalum capacitor technology, AVX Ltd., Tantalum Division Paignton, England. https://www.yumpu.com/en/document/read/42806826/basic-tantalum-capacitor-technology-avx. Accessed 10 Nov 2020

  47. Hunter MA (1953) Early history of titanium. JOM 5:130–132

    CAS  Google Scholar 

  48. Sahu SK, Chmielowiec B, Allanore A (2017) Electrolytic extraction of copper, molybdenum and rhenium from molten sulfide electrolyte. Electrochim Acta 243:382–389

    CAS  Google Scholar 

  49. Okamoto H (1998) C-Ta (carbon-tantalum). J Phase Equilib 19:88

    Google Scholar 

  50. Vaughan DA, Stewart OM, Schwartz CM (1960) Determination of interstitial solid-solubility limit in tantalum and identification of the precipitate phases. Battelle Memorial Institute, 15th edn., UC-25 Metallurgy and Ceramics, TID-4500, Report No. BMI-1472.

  51. Freeman Y (2018) Tantalum and niobium-based capacitors: science, technology, and applications. Springer, Cham. https://doi.org/10.1007/978-3-319-67870-2

    Book  Google Scholar 

  52. Gebhardt E, Seghezzi HD (1959) Investigation in system Ta–O. II. Reaction and equilibrium between mixed crystal andoxide phases. Z Metallkd 50:521

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellowship (No. P18054), Grants-in-Aid for Scientific Research (KAKENHI Grant Nos 18F18054 and 17H03434) and the Japan Mining Industry Association. The kind support from JSPS and the International Affairs Office of the Faculty of Engineering, Hokkaido University, are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eltefat Ahmadi or Ryosuke O. Suzuki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. We do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

The contributing editor for this article was Hongmin Zhu.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, E., Suzuki, R.O. Tantalum Metal Production Through High-Efficiency Electrochemical Reduction of TaS2 in Molten CaCl2. J. Sustain. Metall. 7, 437–447 (2021). https://doi.org/10.1007/s40831-021-00347-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-021-00347-1

Keywords

Navigation