Log in

Solving System of Fractional Differential Equations via Vieta-Lucas Operational Matrix Method

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Vieta-Lucas polynomials (VLPs) belong to the class of weighted orthogonal polynomials, which can be used to effectively handle various natural and engineered problems. The classical fractional derivative due to Caputo is used to write the emerging operational matrices. These matrices are developed and evaluated by using the properties of VLPs. The residuated functions are mapped to zero by the tools of the Tau algorithm. Convergence and error analysis are thoroughly explored. Test examples for a fractional system of differential equations are borrowed from literature. The theoretical and simulated exercise on these examples authenticate the relevance of this scheme. Here, novel inclusion of Vieta-Lucas polynomials has been ensured in combination with the Tau approach. The operational matrix approach which provides extensive information about the fractional derivatives of different terms of Vieta-Lucas polynomial expansion, is ensured to operate to reduce the problem into an algebraic setup. The novelty is further enhanced by comparing the present scheme with the fourth-order Runge–Kutta method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Kilbas, Anatoliĭ Aleksandrovich, Srivastava, Hari M., Trujillo, Juan J.: Theory and applications of fractional differential equations, volume 204. elsevier, (2006)

  2. Heydari, M.H., Avazzadeh, Z., Razzaghi, M.: Vieta-lucas polynomials for the coupled nonlinear variable-order fractional ginzburg-landau equations. Appl. Numer. Math. 165, 442–458 (2021)

    Article  MathSciNet  Google Scholar 

  3. Demirci, Elif, Ozalp, Nuri: A method for solving differential equations of fractional order. J. Comput. Appl. Math. 236(11), 2754–2762 (2012)

    Article  MathSciNet  Google Scholar 

  4. Troparevsky, María I., Seminara, Silvia A., Fabio, Marcela A: A review on fractional differential equations and a numerical method to solve some boundary value problems. Nonlinear Syst.-Theor. Asp. Recent Appl., (2019)

  5. Gülsu, Mustafa, Öztürk, Yalçın, Sezer, Mehmet: A new collocation method for solution of mixed linear integro-differential-difference equations. Appl. Math. Comput. 216(7), 2183–2198 (2010)

    MathSciNet  Google Scholar 

  6. Vedat, Suat Ertürk, Shaher, Momani: Solving systems of fractional differential equations using differential transform method. J. Comput. Appl. Math. 215(1), 142–151 (2008)

  7. Noor, Zulfiqar Ahmad, Talib, Imran, Abdeljawad, Thabet, Alqudah, Manar A.: Numerical study of caputo fractional-order differential equations by develo** new operational matrices of vieta–lucas polynomials. Fractal Fract., 6(2):79, (2022)

  8. Daftardar-Gejji, Varsha, Sukale, Yogita, Bhalekar, Sachin: Solving fractional delay differential equations: a new approach. Fract. Calc. Appl. Anal. 18(2), 400–418 (2015)

    Article  MathSciNet  Google Scholar 

  9. Sakar, Mehmet Giyas , Akgül, Ali, Baleanu, Dumitru: On solutions of fractional riccati differential equations. Adv. Differ. Equ., 2017(1):1–10, (2017)

  10. Li, Lili, Li, Dongfang: Exact solutions and numerical study of time fractional burgers’ equations. Appl. Math. Lett. 100, 106011 (2020)

    Article  MathSciNet  Google Scholar 

  11. Tajadodi, H.: A numerical approach of fractional advection-diffusion equation with atangana-baleanu derivative. Chaos, Solitons & Fractals 130, 109527 (2020)

    Article  MathSciNet  Google Scholar 

  12. Cascaval, Radu C., Eckstein, Eugene C., Frota, Cicero L, Goldstein, Jerome A.: Fractional telegraph equations. J. Math. Anal. Appl., 276(1):145–159, (2002)

  13. Jafari, H., Ganji, R.M., Nkomo, N.S., Lv, Y.P.: A numerical study of fractional order population dynamics model. Results Phys. 27, 104456 (2021)

    Article  Google Scholar 

  14. GANJI, ROGHAYEH MOALLEM, Jafari, HOSSEIN: A new approach for solving nonlinear volterra integro-differential equations with mittag-leffler kernel. Proc. Instit. Math. Mech. Natl. Acad. Sci. Azerbaijan, 46(1), (2020)

  15. Zhou, Yong: Existence and uniqueness of solutions for a system of fractional differential equations. Fract. Calc. Appl. Anal 12(2), 195–204 (2009)

    MathSciNet  CAS  Google Scholar 

  16. Sun, Shurong, Li, Qiu**, Li, Yanan: Existence and uniqueness of solutions for a coupled system of multi-term nonlinear fractional differential equations. Comput. Math. Appl. 64(10), 3310–3320 (2012)

    Article  MathSciNet  Google Scholar 

  17. Abdulaziz, Omar, Hashim, Ishak, Momani, Shaher: Solving systems of fractional differential equations by homotopy-perturbation method. Phys. Lett. A 372(4), 451–459 (2008)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  18. Kumar, Rakesh, Koundal, Reena, Ali Shehzad, Sabir: Modified homotopy perturbation approach for the system of fractional partial differential equations: A utility of fractional wronskian. Math. Methods Appl. Sci., 45(2):809–826, (2022)

  19. Jafari, H., Firoozjaee, M.A., Johnston, S.J.: An effective approach to solve a system fractional differential equations. Alex. Eng. J. 59(5), 3213–3219 (2020)

    Article  Google Scholar 

  20. Faghih, A., Mokhtary, P.: A novel petrov-galerkin method for a class of linear systems of fractional differential equations. Appl. Numer. Math. 169, 396–414 (2021)

    Article  MathSciNet  Google Scholar 

  21. Doha, Eid H, Bhrawy, Ali H, Ezz-Eldien, Samer S.: A chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl., 62(5):2364–2373, (2011)

  22. Saadatmandi, Abbas, Dehghan, Mehdi: A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59(3), 1326–1336 (2010)

    Article  MathSciNet  Google Scholar 

  23. Doha, Eid H., Bhrawy, AH., Ezz-Eldien, Samer S.: A new jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Modell., 36(10):4931–4943, (2012)

  24. Saadatmandi, Abbas: Bernstein operational matrix of fractional derivatives and its applications. Appl. Math. Model. 38(4), 1365–1372 (2014)

    Article  MathSciNet  Google Scholar 

  25. Jafari, Hossein, Ganji, Roghayeh Moallem, Narsale, Sonali Mandar, Kgarose, Maluti, Nguyen, Van Thinh: Application of hosoya polynomial to solve a class of time-fractional diffusion equations. Fractals, page 2340059, (2023)

  26. Ganji, R.M., Jafari, H., Kgarose, M., Mohammadi, A.: Numerical solutions of time-fractional klein-gordon equations by clique polynomials. Alex. Eng. J. 60(5), 4563–4571 (2021)

    Article  Google Scholar 

  27. Koundal, Reena, Kumar, Rakesh, Kumar, Ravinder, Srivastava, K., Baleanu, D.: A novel collocated-shifted lucas polynomial approach for fractional integro-differential equations. Int. J. Appl. Comput. Math., 7:1–19, (2021)

  28. Koundal, Reena, Kumar, Rakesh, Srivastava, K., Baleanu, D.: Lucas wavelet scheme for fractional bagley–torvik equations: Gauss–jacobi approach. Int. J. Appl. Comput. Math., 8(1):3, (2022)

  29. Kumar, Rakesh, Aeri, Shivani, Baleanu, Dumitru, Nisar, Kottakkaran Soopy: Vieta-lucas wavelet based schemes for the numerical solution of the singular models. ar**v preprint ar**v:2306.16876, (2023)

  30. Kumar, Rakesh, Aeri, Shivani, Sharma, Poonam: Numerical solution of eighth order boundary value problems by using vieta-lucas polynomials. In Int. Workshop Math. Modell., Appl. Anal. Comput., pages 69–81. Springer, (2022)

  31. Tajadodi, Haleh: Efficient technique for solving variable order fractional optimal control problems. Alex. Eng. J. 59(6), 5179–5185 (2020)

    Article  Google Scholar 

  32. Jafari, Hossein, Tajadodi, Haleh, Khatir, Seyed Rabi Mousavian, Nguyen, Van Thinh: Fractional variational problem involving indefinite integrals and nonsingular kernels. Fractals, page 2340048, (2023)

  33. Sheybak, M., Tajadodi, H.: Numerical solutions of fractional chemical kinetics system. Nonlinear Dyn. Syst. Theory 19(1), 200–208 (2019)

    MathSciNet  Google Scholar 

  34. Yüzbaşı, Şuayip: Numerical solutions of fractional riccati type differential equations by means of the bernstein polynomials. Appl. Math. Comput. 219(11), 6328–6343 (2013)

    MathSciNet  Google Scholar 

  35. Chen, Sheng, Shen, Jie, Wang, Li-Lian.: Generalized jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603–1638 (2016)

    Article  MathSciNet  Google Scholar 

  36. Daftardar-Gejji, Varsha, Jafari, Hossein: Adomian decomposition: a tool for solving a system of fractional differential equations. J. Math. Anal. Appl. 301(2), 508–518 (2005)

    Article  MathSciNet  Google Scholar 

  37. Horadam, A.F.: Vieta polynomials. Fibonacci Quarterly 40(3), 223–232 (2002)

    MathSciNet  Google Scholar 

  38. Agarwal, P., El-Sayed, A.A.: Vieta-lucas polynomials for solving a fractional-order mathematical physics model. Adv. Difference Equ. 2020(1), 1–18 (2020)

    Article  MathSciNet  Google Scholar 

  39. Momani, Shaher, Odibat, Zaid: Numerical approach to differential equations of fractional order. J. Comput. Appl. Math. 207(1), 96–110 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  40. Dixit, S., Singh, O., Kumar, S.: An analytic algorithm for solving system of fractional differential equations. J. Mod. Methods Numer. Math. 1(1), 12–26 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors are deeply grateful to the reviewers for carefully reading the paper towards the significant improvement in the quality and presentation of the manuscript.

Funding

There is no funding for this research.

Author information

Authors and Affiliations

Authors

Contributions

1,2,3 write the manuscript. 4 supervise the work. All authors reviewed the manuscript.

Corresponding author

Correspondence to Shivani Aeri.

Ethics declarations

Conflict of interest

Authors have no conflict of interest.

Ethical standard

Compliance with ethical standards.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, R., Aeri, S., Bala, A. et al. Solving System of Fractional Differential Equations via Vieta-Lucas Operational Matrix Method. Int. J. Appl. Comput. Math 10, 14 (2024). https://doi.org/10.1007/s40819-023-01656-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-023-01656-7

Keywords

Navigation