Log in

Analysis of Heatline and Entropy Generation during Magnetohydrodynamic Natural Convection in a Trapezoidal Enclosure

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

This paper presents an analysis of steady natural convection flow in a trapezoidal enclosure with various aspect ratios in presence of magnetic field applied in the direction perpendicular to the parallel side walls. Two different boundary conditions are considered. In both the cases, bottom wall is uniformly heated, the top wall is insulated and left wall is linearly heated. In case 1, right wall is linearly heated while in case 2, right wall is considered to be cold. The numerical computation is carried out using biharmonic formulation in stream function to find the stream lines, isotherms, heatlines, entropy generation due to heat transfer and entropy generation due to fluid friction, local average Nusselt number and Bejan number. We have obtained these results for various values of the Rayleigh number (Ra), Prandlt number (Pr), Hartman number(Ha), aspect ratios (A) \(=0.5,~1.0,~1.5\) and inclination angles of cavity \((\phi )\). It is found that intensity of heat flow decreases as magnetic field parameter increases. It is also observed that the intensity of heat flow increases with the increase in the aspect ratio. Finally, the predicted results for average Nusselt number and Bejan number in both the cases are correlated in terms of the studied parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability

Numerical data is available with the authors.

Abbreviations

\(x,~y=\) :

distance along x and y coordinate, m

\(X,~Y=\) :

dimensionless distance along x and y coordinate

\(u,~v=\) :

x and y component of velocity, \(m s^{-1}\)

\(U,~V=\) :

x and y component of dimensionless velocity

T\(T_{0}=\) :

temperature of the fluid and bulk temperature, K

\(T_{h}\)\(T_{c}=\) :

temperature of hot and cold wall, K

\(p=\) :

pressure, Pa

\(P=\) :

dimensionless pressure

\(L=\) :

Base of the trapezoidal cavity, m

\(Be=\) :

Bejan number

\(g=\) :

acceleration due to gravity, \(m s^{-2}\)

\(k=\) :

thermal conductivity, \(W m^{-1} K^{-1}\)

\(n=\) :

normal vector to the plane

Nu, \(\overline{Nu}=\) :

local and average Nusselt number

\(Pr=\) :

Prandtl number

\(Ra=\) :

Rayleigh number

\(B_{0}=\) :

magnetic field strength

\(Ha=\) :

Hartmann number

\(S_{\theta }=\) :

dimensionless entropy generation due to heat transfer

\(S_{\psi }=\) :

dimensionless entropy generation due to fluid friction

\(S_{total}\)=:

dimensionless total entropy generation due to heat transfer and fluid friction

\(\varOmega =\) :

two-dimensional domain

\(\rho =\) :

density, kg \( m^{-3}\)

\(\theta =\) :

dimensionless temperature

\(\phi =\) :

inclination angle with positive direction of X axis

\(\alpha =\) :

thermal diffusivity, \(m^{2}s^{-1}\)

\(\beta =\) :

volume expansion coefficient, \(K^{-1}\)

\(\mu =\) :

dynamic viscosity, kg \(m^{-1} s^{-1}\)

\(\varPi =\) :

dimensionless heat function

\(\psi =\) :

dimensionless stream function

\(\varphi =\) :

irreversibility distribution ratio

\(\nu =\) :

kinematic viscosity, \(m^{2} s^{-1}\)

av=:

spatial average

b=:

bottom wall

r=:

right wall

l=:

left wall

tatal=:

summation over domain

References

  1. Ozoe, H., Sayama, H., Churchill, S.W.: Natural convection in an inclined rectangular channel at various aspect ratios and angles experimental measurements. Int. J. Heat Mass Transfer 18, 1425–1431 (1975)

    Article  Google Scholar 

  2. Bejan, A.: Convection heat transfer, 3rd edn. Wiley, New York (2004)

    MATH  Google Scholar 

  3. Corcione, M., Habib, E.: Buoyant heat transport in fluids across tilted square cavitys discretely heated at one side. Int. J. Therm. Sci. 49, 797–808 (2010)

    Article  Google Scholar 

  4. Varol, Y., Oztop, H.F., Koca, A.: Effects of inclination angle on conduction-natural convection individeden closures filled with different fluids. Int. Commun. Heat Mass Transfer 37, 182–191 (2010)

    Article  Google Scholar 

  5. Basak, T., Roy, S., Singh, A., Pop, I.: Finite element simulation of natural convection flow in a trapezoidal enclosure filled with porous medium to uniform and non-uniform heating. Int. J. Heat Mass Transfer 52, 70–78 (2009)

    Article  MATH  Google Scholar 

  6. Ilis, G.G., Mobedi, M., Sunden, B.: Effect of aspect ratio on entropy generation in a rectangular cavity with differentially heated vertical walls. Int. Commun. Heat Mass Transfer 35, 696–703 (2008)

    Article  Google Scholar 

  7. Basak, T., Anandalakshmi, R., Singh, A.K.: Heatline analysis isothermal management with conjugate natural convection in a square cavity. Chem. Eng. Sci. 93, 67–90 (2013)

    Article  Google Scholar 

  8. Costa, V.A.F.: Unified streamline, heatline and massline methods for the visualization of two-dimensional heat and mass transfer in anisotropic media. Int. J. Heat Mass Transfer 46, 1309–1320 (2003)

    Article  MATH  Google Scholar 

  9. Basak, T., Chamkha, A.J.: Heatline analysis on natural convection for nanofluids confined within square cavities with various thermal boundary conditions. Int. J. Heat Mass Transfer 55, 5526–5543 (2012)

    Article  Google Scholar 

  10. Sheremet, M.A., Oztop, H.F., Pop, I., Abu-Hamdeh, N.: Analysis of entropy generation in natural convection of nanofluid inside a square cavity having hot solid block: Tiwari and Das Model. J. Entropy 18(9), 1–15 (2016)

    Google Scholar 

  11. Shavik, S.M., Hassan, M.N., Morshed, A.K.M.M., Islam, M.Q.: Natural convection and entropy generation in a square cavity with differentially heated vertical walls. Procedia Eng. 90, 557–562 (2014)

    Article  Google Scholar 

  12. Mahapatra, T.R., Saha, Bikash C., Pal, D.: Magnetohydrodynamic double-diffusive natural convection for nanofluid within a trapezoidal enclosure. Comput. Appl. Math. 37(5), 6132–6151 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Saha, Bikash C., Mahapatra, T.R., Pal, D.: Analysis of heatline and massline in magnetohydrodynamic double diffusive natural convection of nanofluid within a trapezoidal enclosure. J. Nanofluids 7(6), 1149–1163 (2018)

    Article  Google Scholar 

  14. Peric, M.: Natural convection in trapezoidal cavities. Numer. Heat Transfer Part A 24, 213–219 (1993)

    Article  Google Scholar 

  15. Varol, Y.: Natural convection in divided trapezoidal cavities filled with fluid saturated porous media. Int. Commun. Heat Mass Transfer 37, 1350–1358 (2010)

    Article  Google Scholar 

  16. Basak, T., Kumar, P., Anandalakshmi, R., Roy, S.: Analysis of entropy generation minimization during natural convection in trapezoidal enclosures of various angles with linearly heated side wall(s). Ind. Eng. Chem. Res. 51, 4069–4089 (2012)

    Article  Google Scholar 

  17. Basak, T., Ramakrishna, D., Roy, S., Matta, A., Pop, I.: A comprehensive heatline based approach for natural convection flows in trapezoidal enclosures: effect of various walls heating. Int. J. Therm. Sci. 50, 1385–1404 (2011)

    Article  Google Scholar 

  18. Saha, Bikash C., Mahapatra, T.R., Pal, D.: Heat and mass flow in lid-driven magnetohydrodynamic double diffusive mixed convection of nanofluid within a trapezoidal enclosure. J. Nanofluids 8(4), 817–829 (2019)

    Article  Google Scholar 

  19. Saha, Bikash C., Mahapatra, T.R., Pal, D.: Simulation of heatlines and masslines visualization of MHD double-diffusive natural convection in \(Al_{2}O_{3}\)-nanofluid saturated with porous medium. J. Nanofluids 8(5), 1020–1033 (2019)

    Article  Google Scholar 

  20. Teamah, M.A., El-Maghlany, W.M.: Augmentation of natural convective heat transfer in square cavity by utilizing nanofluids in the presence of magnetic field and uniform heat generation/absorption. Int. J. Therm. Sci. 58, 130–142 (2012)

    Article  Google Scholar 

  21. Mahapatra, T.R., Pal, D., Mondal, S.: Mixed convection flow in an inclined enclosure under magnetic field with thermal radiation and heat generation. Int. Commun. Heat Mass Transfer 41, 47–56 (2013)

    Article  Google Scholar 

  22. Sivasankaran, S., Ho, C.J.: Effect of temperature dependent properties on MHD convection of water near its density maximum in a square cavity. Int. J. Therm. Sci. 47, 1184–1194 (2008)

    Article  Google Scholar 

  23. Hossain, M.S., Alim, M.A.: MHD free convection within trapezoidal cavity with non-uniformly heated bottom wall. Int. J. Heat Mass Transfer 69, 327–336 (2014)

    Article  Google Scholar 

  24. Gupta, M.M., Kalita, J.C.: A new paradigm for solving Navier-Stokes equations: streamfunction-velocity formulation. J. Comp. Physics 207, 52–68 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kalita, J.C., Sen, S.: The biharmonic approach for unsteady flow past an impulsively started circular cylinder. Commun. Comput. Phys. 12(4), 1163–1182 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pandit, S.K.: On the use of compact streamfunction-velocity formulation of steady Navier-Stokes equations on geometries beyoud rectangular. J. Sci. Comput. 36, 219–242 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Carvalho, R.D.M., Goldstein, L., Jr., Milanez, L.F.: Heat transfer analysis of digital transmission equipment with horizontally arranged printed circuit boards. Heat Transfer Eng. 9, 44–53 (1988)

    Article  Google Scholar 

  28. Davis, G.D.: Natural convection of air in a square cavity: A Benchmark numerical solution. Int. J. Numer. Methods Fluids 3, 249–264 (1983)

    Article  MATH  Google Scholar 

  29. Mobedi, M., Özkol, Ü., Sunden, B.: Visualization of diffusion and convection heat transport in a square cavity with natural convection. Int. J. Heat a Mass Trans. 53, 99–109 (2010)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

One of the authors, T.R. Mahapatra, is thankful to the University Grant Commission, New Delhi, India for providing financial support through SAP (DRS PHASE III) ( Sanction letter no. F. 510/3/DRS-III/2015 (SAP) ).

Funding

There is no funding to bear publication charge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TR Mahapatra.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\begin{aligned} G= & {} \frac{1}{1+2\eta A \cot \phi },~~E=-2 G \cot \phi (2 \xi -1),~~F = G^{2}[1+ \cot ^{2}\phi (2 \xi -1)^{2}], \\ H= & {} 4 G^{2} \cot ^{2}\phi (2\xi -1),~~ C=-U G+ V G(2\xi -1)\cot \phi + Pr H,\\{} & {} \quad ~~B=U G+ 0.5 V E A-H,\\ T_{1}= & {} -8Pr F G^{2}(1-2\xi )\cot ^{2}\phi +PrFH +F C\\{} & {} - 4 A G^{3}\cot \phi [1+(1-2\xi )^{2}\cot ^{2}\phi ], \\ T_{2}= & {} -\frac{8}{A}Pr F G \cot \phi - 8Pr E G^{2}(1-2\xi )\cot ^{2}\phi \\ {}{} & {} +Pr E H-\frac{8}{A}G^{3} Pr \cot \phi [1+(1-2\xi )^{2}\cot ^{2}\phi ]+C E-\frac{V E}{A}, \\ T_{3}= & {} -\frac{4}{A}Pr E G \cot \phi -\frac{8}{A^{2}}Pr G^{2}(1-2\xi )\cot ^{2}\phi +\frac{Pr H}{A^{2}}+\frac{C}{A^{2}}-\frac{V E}{A}, \\ T_{4}= & {} 24 G^{2}Pr \cot ^{2}\phi +32Pr E G^{3} A(1-2\xi )\cot ^{3}\phi \\{} & {} +24 G^{4} Pr \cot ^{2} \phi [1+(1-2\xi )^{2}\cot ^{2}\phi ] \\{} & {} -4 C G^{2} (1-2\xi )\cot ^{2}\phi +C H+4 VG^{3} \cot \phi [1+(1-2\xi )^{2}\cot ^{2}\phi ], \\ T_{5}= & {} \frac{2 Pr F}{A^{2}}+Pr E^{2}, \\ T_{6}= & {} 16G^{2}Pr E \cot ^{2}\phi +\frac{32}{A}Pr G^{3}(1-2\xi )\cot ^{3}\phi -\frac{4}{A}C G \cot \phi \\{} & {} \quad +\frac{4}{A}V G^{2}(1-2\xi )\cot ^{2}\phi -\frac{V H}{A}, \\ T_{7}= & {} -32Pr E G^{3}A E\cot ^{3}\phi -96Pr G^{4}(1-2\xi )\cot ^{4}\phi +8C G^{2}\cot ^{2}\phi \\{} & {} \quad -16V G^{3}(1-2\xi )\cot ^{3}\phi , \\ \frac{\partial \psi }{\partial \xi }= & {} \frac{1}{2h}(\psi _{i+1,j}-\psi _{i-1,j}) + O(h^{2}),~~ \frac{\partial \psi }{\partial \eta }= \frac{1}{2h}(\psi _{i,j+1}-\psi _{i,j-1})+ O(h^{2}), \\ \frac{\partial ^{2} \psi }{\partial \xi ^{2}}= & {} \frac{1}{h^{2}}(\psi _{i+1,j}-2\psi _{i,j}+\psi _{i-1,j})+ O(h^{2}),\\ \frac{\partial ^{2} \psi }{\partial \eta ^{2}}= & {} \frac{1}{h^{2}}(\psi _{i,j+1}-2\psi _{i,j}+\psi _{i,j-1})+ O(h^{2}), \\ \frac{\partial ^{2} \psi }{\partial \xi \partial \eta }= & {} \frac{1}{4h^{2}}(\psi _{i-1,j-1}-\psi _{i+1,j-1}+\psi _{i+1,j+1}-\psi _{i-1,j+1})+ O(h^{2}), \\ \frac{\partial ^{3} \psi }{\partial \xi ^{2}\partial \eta }= & {} \frac{1}{2h^{3}}(2\psi _{i,j-1}-2\psi _{i,j+1}-\psi _{i-1,j-1}-\psi _{i+1,j-1}\\{} & {} +\psi _{i+1,j+1}+\psi _{i-1,j+1})+ O(h^{2}), \\ \frac{\partial ^{3} \psi }{\partial \xi ^{3}}= & {} \frac{1}{h^{2}}(\psi _{\xi i+1,j}-2\psi _{\xi i,j}+\psi _{\xi i-1,j})+ O(h^{2}),\\ \frac{\partial ^{3} \psi }{\partial \eta ^{3}}= & {} \frac{1}{h^{2}}(\psi _{\eta i,j+1}-2\psi _{\eta i,j}+\psi _{\eta i,j-1})+ O(h^{2}), \\ \frac{\partial ^{3} \psi }{\partial \xi \partial \eta ^{2}}= & {} \frac{1}{2h^{3}}[2\psi _{i-1,j}-2\psi _{i+1,j}-\psi _{i-1,j-1}+\psi _{i+1,j-1}\\{} & {} +\psi _{i+1,j+1}-\psi _{i-1,j+1}]+ O(h^{2}), \\ \frac{\partial ^{4} \psi }{\partial \xi ^{4}}= & {} \frac{6}{h^{4}}[h(\psi _{\xi i+1,j}-\psi _{\xi i-1,j})-2(\psi _{i+1,j}-2\psi _{i,j}+\psi _{i-1,j})]+ O(h^{2}), \\ \frac{\partial ^{4} \psi }{\partial \eta ^{4}}= & {} \frac{6}{h^{4}}[h(\psi _{\eta i,j+1}-\psi _{\eta i,j-1})-2(\psi _{i,j+1}-2\psi _{i,j}+\psi _{i,j-1})]+ O(h^{2}), \\ \frac{\partial ^{4} \psi }{\partial \xi ^{3}\partial \eta }= & {} \frac{1}{2 h^{3}}[2\psi _{\xi i,j-1}-2\psi _{\xi i,j+1}-\psi _{\xi i-1,j-1}-\psi _{\xi i+1,j-1}+\psi _{\xi i+1,j+1}\\{} & {} +\psi _{\xi i-1,j+1}]+ O(h^{2}), \\ \frac{\partial ^{4} \psi }{\partial \xi \partial \eta ^{3}}= & {} \frac{1}{2 h^{3}}[2\psi _{\eta i-1,j}-2\psi _{\eta i+1,j}-\psi _{\eta i-1,j-1}+\psi _{\eta i+1,j-1}\\{} & {} +\psi _{\eta i+1,j+1}-\psi _{\eta i-1,j+1}]+ O(h^{2}), \\ \frac{\partial ^{4} \psi }{\partial \xi ^{2}\partial \eta ^{2}}= & {} \frac{1}{h^{4}}[4\psi _{i,j}-2(\psi _{i-1,j}+\psi _{i+1,j}+\psi _{i,j-1}+\psi _{i,j+1})+\psi _{i-1,j-1} \\ {}{} & {} +\psi _{i+1,j-1}+\psi _{i+1,j+1}-\psi _{i-1,j+1}]+ O(h^{2}). \end{aligned}$$

Here, h is the step length on a uniform rectangular mesh in the transformed domain.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatra, T., Saha, B.C., Pal, D. et al. Analysis of Heatline and Entropy Generation during Magnetohydrodynamic Natural Convection in a Trapezoidal Enclosure. Int. J. Appl. Comput. Math 8, 280 (2022). https://doi.org/10.1007/s40819-022-01473-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01473-4

Keywords

Navigation