Log in

Numerical Analysis of Fluid Flow Behaviour in Four-Sided Square Lid-Driven Cavity Using the Finite Volume Technique

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

In the present study, numerical simulations of two-dimensional steady-state incompressible Newtonian fluid flow in one-sided and four-sided lid-driven square cavities are reported. For the one-sided lid-driven cavity, the upper wall is moved to the right with up to 5000 Reynolds numbers under a grid size of up to \( 501\times 501\). This lends support to previous findings in the literature. Two cases are used in this article for the four-sided lid-driven square cavity specifically. In case-I, the top and lower walls are moved to the right, while the left and right walls are moved upward and downward, respectively. In case II, the top wall is moved to the left, the lower wall to the right, the left wall is moved upward, and the right wall is moved downward, with all three walls moving at the same speed one and the bottom wall moving at two. Conventional numerical solutions show that the unique solutions exist for all Reynolds numbers for both the geometries. All possible flow solutions are studied in the present article, as velocity profiles and streamline contours for the same Reynolds number using a finite volume SIMPLE technique. The work done in this paper includes flow properties such as the location of primary and secondary vortices, velocity components, and numerical values for benchmarking purposes, and it is in excellent agreement with previous findings in the literature. A PARAM Shavak, high-performance computing computer, was used to execute the calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this article.

Abbreviations

2D :

Two dimensional

SIMPLE:

Semi implicit method for pressure linked equation

HPC:

High performance computing

FVM:

Finite volume technique

PV:

Primary vortex

Right-SV:

Right secondary vortex

Left-SV:

Left secondary vortex

Left-USV:

Left upper secondary vortex

UPV:

Upper primary vortex

LPV:

Left primary vortex

RPV:

Right primary vortex

BPV:

Bottom primary vortex

BSV:

Bottom secondary vortex

u :

x-axis velocity component (m/s)

\(u^*\) :

x-axis approximate velocity component (m/s)

\(u^\prime \) :

x-axis correction velocity component (m/s)

v :

y-axis velocity component (m/s)

\(v^*\) :

y-axis approximate velocity component (m/s)

\(v^\prime \) :

y-axis correction velocity component (m/s)

p :

Pressure (\(\mathrm{N/m}^2\))

\(p^*\) :

Guessed pressure (\(\mathrm{N/m}^2\))

\(p^\prime \) :

Correction pressure (\(\mathrm{N/m}^2\))

i :

x-direction node location

j :

y-direction node location

Re :

Reynolds number

\(\Delta x\) :

x-direction spatial step

\(\Delta y\) :

y-direction spatial step

References

  1. Ozisik, M.N.: Heat Transfer: A Basic Approach. McGraw-Hill, New York (1985)

    MATH  Google Scholar 

  2. Anderson, J.D., Wendt, J.: Computational Fluid Dynamics. Springer, Berlin (1995)

    Google Scholar 

  3. Moukalled, F., Mangani, L., Darwish, M.: The Finite Volume Method in Computational Fluid Dynamics, p. 113. Springer, Berlin (2016)

    Book  Google Scholar 

  4. Kundu, PK., Cohen, IM.: Fluid mechanics. (2002)

  5. Peng, H.F., Yang, K., Cui, M., Gao, X.W.: Radial integration boundary element method for solving two-dimensional unsteady convection-diffusion problem. Eng. Anal. Boundary Elem. 102, 39–50 (2019)

    Article  MathSciNet  Google Scholar 

  6. Anley, E.F., Zheng, Z.: Finite difference approximation method for a space fractional convection-diffusion equation with variable coefficients. Symmetry 12(3), 485 (2020)

    Article  Google Scholar 

  7. Appadu, A.R., Djoko, J.K., Gidey, H.: A computational study of three numerical methods for some advection-diffusion problems. Appl. Math. Comput. 272, 629–647 (2016)

    MathSciNet  MATH  Google Scholar 

  8. Mazumder, S.: Numerical Methods For Partial Differential Equations: Finite Difference And Finite Volume Methods. Academic Press, Cambridge (2015)

    MATH  Google Scholar 

  9. Suhas, P.: Numerical Heat Transfer and Fluid Flow. Hemisphere publishing corporation, Etas-Unis d’Amérique (1980)

    MATH  Google Scholar 

  10. Ghia, U., Ghia, K.N., Shin, C.: High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. J. Comput. Phys. 48(3), 387–411 (1982)

    Article  Google Scholar 

  11. Erturk, E.: Discussions on driven cavity flow. Int. J. Numer. Meth. Fluids 60(3), 275–294 (2009)

    Article  MathSciNet  Google Scholar 

  12. Von Terzi, DA.: Numerical investigation of transitional and turbulent backward-facing step flows. PhD thesis. The University of Arizona (2004)

  13. Versteeg, H.K., Malalasekera, W.: An Introduction to Computational Fluid Dynamics: the Finite Volume Method. Pearson education, London (2007)

    Google Scholar 

  14. Indukuri, J.V., Maniyeri, R.: Numerical simulation of oscillating lid-driven square cavity. Alex. Eng. J. 57(4), 2609–2625 (2018)

    Article  Google Scholar 

  15. Patel, M.R., Pandya, J.U.: Numerical study of a one and two-dimensional heat flow using finite volume. Mater. Today Proc. 51(1), 48–57 (2021)

    Google Scholar 

  16. Ding, P.: Solution of lid-driven cavity problems with an improved SIMPLE algorithm at high Reynolds numbers. Int. J. Heat Mass Transf. 115, 942–954 (2017)

    Article  Google Scholar 

  17. Demirdžić, I., Lilek, Ž, Perić, M.: Fluid flow and heat transfer test problems for non-orthogonal grids: bench-mark solutions. Int. J. Numer. Meth. Fluids 15(3), 329–354 (1992)

    Article  Google Scholar 

  18. Som, S.: Introduction to Heat Transfer. PHI learning Pvt Ltd (2008)

  19. Wahba, E.M.: Multiplicity of states for two-sided and four-sided lid-driven cavity flows. Comput. Fluids 38, 247–253 (2009)

    Article  Google Scholar 

  20. Dass, A.K., Perumal, D.A.: Multiplicity of steady solutions in two-dimensional lid-driven cavity flows by Lattice Boltzmann Method. Comput. Math. Appl. 61, 3711–3721 (2011)

    Article  MathSciNet  Google Scholar 

  21. Cadou, J.M., Guevel, Y., Girault, G.: Numerical tools for the stability analysis of 2D flows: application to the two- and four-sided lid-driven cavity. Fluid Dyn. Res. 44, 031403 (2012)

    Article  MathSciNet  Google Scholar 

  22. Chen, K.T., Tsai, C.C., Luo, W.J.: Multiplicity flow solutions in a four-sided lid-driven cavity. Appl. Mech. Mater. 368–370, 838–843 (2013)

    Google Scholar 

  23. Granados, J.M., Power, H., Bustamante, C.A., Florez, W.F., Hill, A.F.: A global particular solution meshless approach for the four-sided lid-driven cavity fow problem in the presence of magnetic fields. Comput. Fluids 160, 120–137 (2018)

    Article  MathSciNet  Google Scholar 

  24. Albensoeder, S., Kuhlmann, H., Rath, H.: Multiplicity of steady two-dimensional flows in twosided lid-driven cavities. Theoret. Comput. Fluid Dyn. 14, 223–241 (2001)

    Article  Google Scholar 

  25. Syrakos, A., Georgiou, G., Alexandrou, A.: Solution of the square lid-driven cavity flow of a Bingham plastic using the finite volume method. J. Nonnewton. Fluid Mech. 195, 19–31 (2013)

    Article  Google Scholar 

  26. Syrakos, A., Dimakopoulos, Y., Georgiou, G.C., Tsamopoulos, J.: Viscoplastic flow in an extrusion damper. J. Non-Newtonian Fluid Mech. 232, 102–124 (2016)

    Article  MathSciNet  Google Scholar 

  27. Syrakos, A., Dimakopoulos, Y., Tsamopoulos, J.: A Finite Volume method for the simulation of elastoviscoplastic flows and its application to the lid-driven cavity case. J. Nonnewton. Fluid Mech. 275, 104216 (2020)

    Article  MathSciNet  Google Scholar 

  28. Azzouz, EA., Houat, S., Benhizia, O.: Numerical study of steady flow inside a lid-driven square cavity for Reynolds number up to 50000, 23ème Congrès Français de Mécanique, (2017)

  29. Faridzadeh, M.R., Toghraie, D., Niroumand, A.: Analysis of laminar mixed convection in an inclined square lid-driven cavity with a nanofluid by using an artificial neural network. Heat Transf. Res. 45, 361–390 (2014)

    Article  Google Scholar 

  30. Rahmati, A.R., Akbari, O.A., Marzban, A., Toghraie, D., Karimi, R., Pourfattah, F.: Simultaneous investigations the effects of non-Newtonian nanofluid flow in different volume fractions of solid nanoparticles with slip and no-slip boundary conditions. Therm. Sci. Eng. Prog. 5, 263–277 (2018)

    Article  Google Scholar 

  31. Dabiri, S., Khodabandeh, E., Poorfar, A.K., Mashayekhi, R., Toghraie, D., Zade, S.A.A.: Parametric investigation of thermal characteristic in trapezoidal cavity receiver for a linear Fresnel solar collector concentrator. Energy 153, 17–26 (2018)

    Article  Google Scholar 

  32. Li, Z., Barnoon, P., Toghraie, D., Dehkordi, R.B., Afrand, M.: Mixed convection of non-Newtonian nanofluid in an H-shaped cavity with cooler and heater cylinders filled by a porous material: Two phase approach. Adv. Powder Technol. 30, 2666–2685 (2019)

    Article  Google Scholar 

  33. Azzouz, E.A., Houat, S.: Numerical analysis and explore of asymmetrical fluid flow in a two-sided lid-driven cavity. J. Mech. Eng. Sci. 14, 7269–7281 (2020)

    Article  Google Scholar 

  34. Azzouz, E.A., Houat, S., Dellil, A.Z.: Numerical assessment of turbulent flow driving in a two-sided lid-driven cavity with antiparallel wall motion. DDF 406, 133–148 (2021)

    Article  Google Scholar 

  35. Ferziger, J., Peric, M.: Computational Methods for Fluid Dynamics. Springer, Berlin (2012)

    MATH  Google Scholar 

  36. Smith, G.D.: Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford University Press, Oxford (1985)

    Google Scholar 

  37. Yaghoubi, A.: High Order Finite Difference Schemes for Solving Advection-Diffusion Equation

  38. Sastry, S.S.: Introductory Methods of Numerical Analysis. PHI Learning Pvt Ltd (2012)

  39. Patel, M.R., Pandya, J.U.: A research study on unsteady state convection diffusion flow with adoption of the finite volume technique. J. Appl. Math. Comput. Mech. 20(4), 65–76 (2021)

    Article  MathSciNet  Google Scholar 

  40. Hou, S., Zou, Q., Chen, S., Doolen, G., Cogley, A.C.: Simulation of cavity flow by the lattice Boltzmann method. J. Comput. Phys. 118(2), 329–347 (1995)

    Article  Google Scholar 

  41. Gupta, M.M., Kalita, J.C.: A new paradigm for solving Navier-Stokes equations: streamfunction-velocity formulation. J. Comput. Phys. 207(1), 52–68 (2005)

    Article  MathSciNet  Google Scholar 

  42. Kamel, A.G., Haraz, E.H., Hanna, S.N.: Numerical simulation of three-sided lid-driven square cavity. Eng. Rep. 2(4), e12151 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors would like to express our special thanks and gratitude to DST, Gujcost, and C-DAC high-performance computing clusters, PARAM Shavak of KSV.

Funding

No funding for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj R. Patel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, M.R., Pandya, J.U. & Patel, V.K. Numerical Analysis of Fluid Flow Behaviour in Four-Sided Square Lid-Driven Cavity Using the Finite Volume Technique. Int. J. Appl. Comput. Math 8, 153 (2022). https://doi.org/10.1007/s40819-022-01353-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01353-x

Keywords

Navigation