Log in

Numerical Study of Turbulent Airflow Structure and Transfer of Heat Having Trapezoidal Baffles Attached on the Walls and Centerline of the Rectangular Channel

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

Numerically, we have studied different characteristics of turbulent air flow (flow structure, axial velocity profiles, dimensionless coefficient of skin friction, normalized friction factor),and heat transfer (local Nusselt number, and average Nusselt number) phenomena through a rectangular channel having trapezoidal baffles attached on its walls, and along the centerline of it. The governing equations have been solved using the finite volume method and to visualize the simulation results, fluent software has been employed. It is shown that the maximum value of pressure drop occurs on the upstream, and minimum value attains in the downstream section of the channel. It is ensured that an increase in the Reynolds number (Re) causes increase in normalize friction factor (F), and average Nusselt number (Nuav). The simulation results of this work will help to design and monitor flow phenomena through many thermal applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Abbreviations

\(C\) :

Empirical constant, \(C_{\mu }\) = 0.09, \(C_{1\epsilon }\) = 1.44, \(C_{2\epsilon }\) = 1.92, \(\sigma_{k}\) = 1.0, \(\sigma_{\epsilon } = 1.3\)

\(C_{p}\) :

Average pressure coefficient

Cf(x):

Skin friction coefficient

f0 :

Friction factor of smooth channel [Petukhov[1]] = \(\left( {0.79 \ln {\text{Re}} - 1.64} \right)^{ - 2}\) for \(\le {\text{Re}} \le 500,000\)

F:

Average friction factor = \(\frac{2\Delta p H}{{L \rho u_{0 }^{2} }}\)

F:

Normalize friction factor = \(\frac{f}{{f_{0} }}\)

\(G_{k}\) :

Production rate of kinetic energy due to

h(x):

Coefficient of heat transfer

H:

Channel width (m)

HT:

Heat transfer

kf :

Thermal conductivity (Wm1 K1)

\(k\) :

Turbulent kinetic energy = \(\frac{1}{2}\overline{{u_{i}^{{\prime }} u_{j}^{{\prime }} }}\)

L:

Length of channel

M:

Meter

Ne :

Total number of elements

p:

Pressure

p1 :

Pressure at inlet

p2 :

Pressure at outlet

\(\Delta p\) :

Absolute pressure drop =|(p2-p1)|

T:

Temperature

Tw :

Wall temperature = 375 K

\(u_{i}^{\prime } ,u_{j}^{\prime }\) :

Fluctuation velocity components in in xi and xj directions

u0 :

Input velocity [ms1]

\(\rho\) :

Density (kg m3)

\(\mu\) :

Dynamic viscosity [Pa.s]

Re:

Reynolds number = \(\frac{{u_{0 } \rho H}}{\mu }\)

Nu:

Nusselt number

\(Nu\left( x \right)\) :

Local Nusselt number \(= \frac{h\left( x \right)L}{{k_{f} }}\)

Nuav :

Average Nusselt number = \(\frac{1}{L}\mathop \smallint \limits_{0}^{L} Nu\left( x \right) dx\)

\(Nu_{0}\) :

Average Nusselt number of smooth channel [Dittus and Boelter [2]] = \(0.023 {\text{Re}}^{0.8} \Pr^{0.4}\) for \({\text{Re}} \ge 10,000\)

Nuna :

Normalized average Nusselt number

NCf(x):

Normalize skin friction coefficient = Cf(x)/f0

FVM:

Method of finite volume

Pr:

Prandtl number

\(\frac{\mu }{Pr}\) :

Molecular diffusivity

\(\frac{{\mu_{t} }}{{Pr_{t} }}\) :

Turbulent thermal diffusivity

\(\mu_{t}\) :

Turbulent viscosity = \(\rho C_{\mu } \frac{{k^{2} }}{\epsilon }\)

\(\delta_{ij}\) :

Kronecker delta

\(Y^{ + }\) :

Normalize distance of the walls

\(k_{p}\) :

Kinetic energy of turbulence at position P

\(y_{p}\) :

Distance from position P to the wall

E:

= 9.81

r:

= 0.42

v:

Velocity in y direction

x:

Y, Cartesian coordinate

ui :

Uj, components of mean velocity [ms1] in xi and xj directions

Tin :

Inlet temperature = 300 K

References

  1. Petukhov, B.: Heat transfer and friction in turbulent pipe flow with variable physical properties. Adv Heat Tranf 6, 503–564 (1970)

    Article  Google Scholar 

  2. Dittus, W.F., Boelter, M.L.K.: Heat transfer in automobile radiators of the tubular type. Int. Commun. Heat Mass Transf. 12(1), 03–22 (1985)

    Article  Google Scholar 

  3. Wiemer, P.: Untersuchungber den Zugwiederstand von Wasserrohrkesseln. Dissertation, RWTH Aachen (1937)

  4. Gunter, A.Y., Sennstrom, H.R., Kopp, S.: A study of flow patterns in baffled heat exchangers. ASME, 47-A-103 (1947)

  5. Bergelin, O.P., Brown, G.A., Colburn, A.P.: Heat transfer and fluid friction during flow across banks of tubes-V: a study of a cylindrical baffles exchanger without internal leakage. ASME J. Heat Transf. 75, 841–850 (1953)

    Google Scholar 

  6. Gay, B., Williams, T.A.: Heat transfer on the shell-side of a cylindrical shelland-tube heat exchanger fitted with segmental baffles. Transf. Ins. Chem. Eng. 46, 95–100 (1968)

    Google Scholar 

  7. Gay, B., Mackley, N.V., Jenkins, J.D.: Heat transfer in baffled cylindrical shell-and-tube exchangers: an electrochemical transfer modelling technique. Int. J. Heat Mass Transf. 19(9), 995–1002 (1976)

    Article  Google Scholar 

  8. Gay, B., Jenkins, J.D., Mackley, N.V.: Shell-side heat transfer coefficient in cylindrical heat exchangers: the influence of geometrical factors, I. The leakage case. Lett. Heat and Mass Transf. 4, 41–52 (1977)

    Article  Google Scholar 

  9. Gay, B., Jenkins, J.D., Mackley, N.V.: Shell-side heat transfer coefficients in cylindrical heat exchangers: the influence of geometrical factors. Lett. Heat and Mass Transf. 8(6), 437–452 (1981)

    Article  Google Scholar 

  10. Patankar, S.V., Liu, C.H., Sparrow, E.M.: Analysis of laminar forced convection heat transfer in ducts. J. Heat Transf. (1977)

  11. Berner, C., Durst, F., McEligot, D.M.: Flow around baffles. J. Heat Transf. 106, 743–749 (1984)

    Article  Google Scholar 

  12. Webb, G.W., Ramadhyani, S.: Fluid flow and heat transfer in a parallel platechannel with staggered baffles. J. Heat Mass Transf. 28(5), 471–495 (1985)

    Google Scholar 

  13. Webb, B.W., Ramadhyani, S.: Conjugate heat transfer in a channel with staggered ribs. Int. J. Heat and Mass Transf. 28(9), 1679–1687 (1985)

    Article  Google Scholar 

  14. Habib, M.A., Attya, A.E., McEligot, D.M.: Calculation of turbulent flow and heattransfer in channels withstreamwise-periodic flow. ASME J. Turbomach. 110, 405–411 (1988)

    Article  Google Scholar 

  15. Habib, M.A., Mobarak, A.M., Sallak, M.A., Hadi, E.A., Affy, R.I.: Experimental investigation of heat transfer and flow over Ba_es of Di_erent heights. J. Heat Transf. 116, 1609–1617 (1994)

    Article  Google Scholar 

  16. Al-Atabi, M.T., Chin, S.B., Luo, X.Y.: Visualization of mixing of flow in circular tubes with segmental baffles. J. Vis. 8(2), 89–92 (2005)

    Article  Google Scholar 

  17. Al-Atabi, M.T., Chin, S.B., Luo, X.Y.: Flow structure in circular tubes withsegmental baffles. J. Vis. Image Process 12, 301–311 (2005)

    Article  Google Scholar 

  18. Bazdidi, F., Naderi, M.: Numerical analysis of laminar heat transfer in entrance region of a horizontal channel with transverse fins. Int. Commun. Heat Mass Transf. 31, 211–220 (2004)

    Article  Google Scholar 

  19. Kelkar, K.M., Patankar, S.V.: Numerical prediction of flow and heat transfer in a parallel plate channel with staggered fins. J. Heat Transf. 109, 25–30 (1987)

    Article  Google Scholar 

  20. Prusty, P., Rout, S., Barik, K.A.: Heat transfer correlation for a triangular protruded surface with a cross-flow jet. Sadhana 44(5), 1–14 (2019)

    Article  MathSciNet  Google Scholar 

  21. Saha, S., Biswas, P., Nath, S., Singh, L.: Numerical simulations of Newtonian fluid flow through a suddenly contracted rectangular channel with two different types of baffle plates. Soft Comput. 25, 9873–9885 (2021)

    Article  Google Scholar 

  22. Chhanda, S.N., Barik, K.A.: Conjugate heat transfer in a rectangular channel with perforated protrusion and cross-flow effect. Int. J. Control Theory Appl. 10(6), 91–100 (2017)

    Google Scholar 

  23. Barik, K.A., Rout, S., Mukherjee, A.: Numerical investigation of heat transfer enhancement from a protruded surface by cross-flow jet using Al2O3nanofluid. Int. J. Heat Mass Transf. 110, 550–561 (2016)

    Article  Google Scholar 

  24. Prithiviraj, M., Andrews, M.J.: Three dimensional numerical simulation of shell and tube heat exchangers. J. Numer. Heat Transf. 33(6), 799–816 (1988)

    Google Scholar 

  25. Prashanta, D., Akram, H.: Internal cooling augmentation in rectangular channel using inclined baffle plates. Int J. Heat Fluid Flow 26, 799–816 (2005)

    Google Scholar 

  26. Shivani, T., Gajusingh, A., Nasiruddin, S., Kamran, S.: The impact of a vortex induced by a baffle on the turbulent structure. Exp. Therm. Fluid Sci. 34, 590–602 (2010)

    Article  Google Scholar 

  27. Kang, K., Anand, N.K.: Use of porous baffles to enhance heat transfer in a rectangular channel. Int. J. Heat Mass Transf. 46(22), 4191–4199 (2003)

    Article  Google Scholar 

  28. Behera, P.P., Barik, K.A., Malik, K.R.: Heat transfer enhancement for a trapezoidal protruded surface with cross-flow jet. Int. J. Control Theory Appl. 10(6), 449–459 (2017)

    Google Scholar 

  29. Karwa, R., Maheshwari, K.B., Karwa, N.: Experimental study of heat transfer enhancement in an asymmetrically heatedrectangular duct with perforated baffles. Int. Commun. Heat Mass Transf. 32, 275–284 (2005)

    Article  Google Scholar 

  30. Bhuiya, K.K.M., Chowdhury, U.S.M., Saha, M., Islam, T.M.: Heat transfer and friction factor characteristics in turbulent flow through a tube fitted with perforated twisted tape inserts. Int. Commun. Heat Mass Transf. 46, 49–57 (2013)

    Article  Google Scholar 

  31. Barik, K.A., Mukherjee, A., Patro, P.: Heat transfer enhancement from a small rectangular channel with different surface protrusions by a turbulent cross flow jet. Int. J. Therm. Sci. 98, 32–41 (2015)

    Article  Google Scholar 

  32. Mukherjee, A., Rout, S., Barik, K.A.: Heat transfer and entropy generation analysis of a protruded surface in presence of a cross-flow jet using Al2O3-water nanofluid. Therm. Sci. Eng. Prog. 5, 327–338 (2015)

    Article  Google Scholar 

  33. Mukherjee, A., Barik, A.: Heat transfer enhancement from a ribbed surface in presence of a cross flow jet: a numerical investigation. J. Mater. Sci. Mech. Eng. 3(3), 172–178 (2016)

    Google Scholar 

  34. Demartini, L.C., Vielmo, H.A., Mller, S.V.: Numeric and experimental analysis of the turbulent flow through a channel with baffle plates. J. Braz. Soc. Mech. Sci. Eng. 26(2), 153–159 (2004)

    Article  Google Scholar 

  35. Nasiruddin, M.H., Siddiqui, K.: Heat transfer augmentation in a heat exchanger tube using a baffle. Int. J. Heat Fluid Flow 28(2), 318–328 (2007)

    Article  Google Scholar 

  36. Launder, B.E., Spalding, D.B.: The numerical computation of turbulence. Comput. Methods Appl. Mech. Eng. 3(2), 269–289 (1974)

    Article  Google Scholar 

  37. Saha, S.: Numerical simulation of turbulent airflow and heat transfer through a rectangular channel along with trapezoidal baffle plates. AIP Conf. Proc. 2341, 1–10 (2021)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the reviewers for their valuable suggestions, which helped a lot to improve this work.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandip Saha.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Biswas, P. & Das, A.N. Numerical Study of Turbulent Airflow Structure and Transfer of Heat Having Trapezoidal Baffles Attached on the Walls and Centerline of the Rectangular Channel. Int. J. Appl. Comput. Math 8, 104 (2022). https://doi.org/10.1007/s40819-022-01252-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-022-01252-1

Keywords

Navigation