Log in

Numerical Solution of Generalized Kuramoto–Sivashinsky Equation Using Cubic Trigonometric B-Spline Based Differential Quadrature Method and One-Step Optimized Hybrid Block Method

  • Original Paper
  • Published:
International Journal of Applied and Computational Mathematics Aims and scope Submit manuscript

Abstract

A novel combination of two schemes has been implemented to determine the approximate solution of Kuramoto–Sivashinsky equation. Differential quadrature method using well-known cubic trigonometric B-splines is adapted in space to obtain a system of initial value problems and reformulated one-step optimized hybrid block method is constructed to deal with the resulted system. A stability and convergence analysis of the method is discussed in detail. Numerical findings corroborate the accuracy and better performance of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data and material

The authors declare that the data supporting the findings of this study are available within the article.

Code availability

For programming, MatlabR2017a has been used.

References

  1. Arora, G., Joshi, V.: Simulation of generalized nonlinear fourth order partial differential equation with quintic trigonometric differential quadrature method. Math. Model. Comput. Simul. 11(6), 1059–1083 (2019)

    Article  MathSciNet  Google Scholar 

  2. Arora, G., Singh, B.K.: Numerical solution of Burger’s equation with modified cubic B-spline differential quadrature method. Appl. Math. Comput. 224, 166–177 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Bellman, R., Kashef, B.G., Casti, J.: Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J. Comput. Phys. 10(1), 40–52 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonzani, I.: Solution of nonlinear evolution problems by parallelized collocation-interpolation methods. Comput. Math. Appl. 34(12), 71–79 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cueto-Felgueroso, L., Peraire, J.: A time-adaptive finite volume method for the Cahn–Hilliard and Kuramoto–Sivashinsky equations. J. Comput. Phys. 227(24), 9985–10017 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dahlquist, G.: Convergence and stability in the numerical integration of ordinary differential equations. Math. Scand. 4, 33–53 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fan, E.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. Sect. A Gen. At. Solid State Phys. 277(4–5), 212–218 (2000)

    MathSciNet  MATH  Google Scholar 

  8. Farnell, A.B., Henrici, P.: Discrete variable methods in ordinary differential equations. Am. Math. Mon. (1962)

  9. Ganji, R.M., Jafari, H., Kgarose, M., Mohammadi, A.: Numerical solutions of time-fractional Klein–Gordon equations by clique polynomials. Alex. Eng. J. 60(5), 4563–4571 (2021)

    Article  Google Scholar 

  10. Ganji, R.M., Jafari, H., Moshokoa, S.P., Nkomo, N.S.: A mathematical model and numerical solution for brain tumor derived using fractional operator. Results Phys. 28, 104671 (2021)

    Article  Google Scholar 

  11. Grimshaw, R., Hooper, A.P.: The non-existence of a certain class of travelling wave solutions of the Kuramoto–Sivashinsky equation. Phys. D Nonlinear Phenom. 50(2), 231–238 (1991)

    Article  MATH  Google Scholar 

  12. Hooper, A.P., Grimshaw, R.: Nonlinear instability at the interface between two viscous fluids. Phys. Fluids 28(1), 37–45 (1985)

    Article  MATH  Google Scholar 

  13. Jafari, H., Ganji, R.M., Nkomo, N.S., Lv, Y.P.: A numerical study of fractional order population dynamics model. Results Phys. 27, 104456 (2021)

    Article  Google Scholar 

  14. Jafari, H., Ganji, R.M., Sayevand, K., Baleanu, D.: A numerical approach for solving fractional optimal control problems with Mittag–Leffler kernel. JVC/Journal Vib. Control. (2021). https://doi.org/10.1177/10775463211016967

    Article  Google Scholar 

  15. Kadkhoda, N., Jafari, H., Ganji, R.M.: A numerical solution of variable order diffusion and wave equations. Int. J. Nonlinear Anal. Appl. 23(Suppl. 6), 2063–2071 (2020)

    Google Scholar 

  16. Khater, A.H., Temsah, R.S.: Numerical solutions of the generalized Kuramoto–Sivashinsky equation by Chebyshev spectral collocation methods. Comput. Math. Appl. 56(6), 1465–1472 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Korkmaz, A., Da, I.: Cubic B-spline differential quadrature methods for the advection–diffusion equation. Int. J. Numer. Methods Heat Fluid Flow 22(8), 1021–1036 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lai, H., Ma, C.: Lattice Boltzmann method for the generalized Kuramoto–Sivashinsky equation. Phys. A Stat. Mech. Appl. 388(8), 1405–1412 (2009)

    Article  MathSciNet  Google Scholar 

  19. Lakestani, M., Dehghan, M.: Numerical solutions of the generalized Kuramoto–Sivashinsky equation using B-spline functions. Appl. Math. Model. 36(2), 605–617 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Michelson, D.: Radial asymptotically periodic solutions of the Kuramoto–Sivashinsky equation. Phys. D Nonlinear Phenom. 237(3), 351–358 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Milne, W.E.: Numerical solution of differential equations. Bull. Am. Math. Soc. (1953)

  22. Mittal, R.C., Arora, G.: Quintic B-spline collocation method for numerical solution of the Kuramoto–Sivashinsky equation. Commun. Nonlinear Sci. Numer. Simul. 15(10), 2798–2808 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mittal, R.C., Dahiya, S.: A quintic B-spline based differential quadrature method for numerical solution of Kuramoto–Sivashinsky equation. Int. J. Nonlinear Sci. Numer. Simul. 18(2), 103–114 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Quan, J.R., Chang, C.T.: New insights in solving distributed system equations by the quadrature method—I. Analysis. Comput. Chem. Eng. 13(7), 779–788 (1989)

    Article  Google Scholar 

  25. Quan, J.R., Chang, C.T.: New insights in solving distributed system equations by the quadrature method—II. Numerical experiments. Comput. Chem. Eng. 13(9), 1017–1024 (1989)

    Article  Google Scholar 

  26. Rademacher, J.D.M., Wittenberg, R.W.: Viscous shocks in the destabilized Kuramoto–Sivashinsky equation. J. Comput. Nonlinear Dyn. 1(4), 336–347 (2006)

    Article  Google Scholar 

  27. Ramos, H., Kalogiratou, Z., Monovasilis, T., Simos, T.E.: An optimized two-step hybrid block method for solving general second order initial-value problems. Numer. Algorithms 72, 1089–1102 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ramos, H., Singh, G.: A note on variable step-size formulation of a Simpson’s-type second derivative block method for solving stiff systems. Appl. Math. Lett. 64, 101–107 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ramos, H., Mehta, S., Vigo-Aguiar, J.: A unified approach for the development of k-step block Falkner-type methods for solving general second-order initial-value problems in ODEs. J. Comput. Appl. Math. 318, 550–564 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ramos, H., Singh, G.: A tenth order A-stable two-step hybrid block method for solving initial value problems of ODEs. Appl. Math. Comput. 310, 75–88 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Ramos, H., Popescu, P.: How many k-step linear block methods exist and which of them is the most efficient and simplest one? Appl. Math. Comput. 316, 296–309 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Shu, C., Richards, B.E.: Application of generalized differential quadrature to solve two-dimensional incompressible Navier–Stokes equations. Int. J. Numer. Methods Fluids 15(7), 791–798 (1992)

    Article  MATH  Google Scholar 

  33. Shu, C.: Differential Quadrature and Its Application in Engineering. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  34. Singh, B.K., Gupta, M.: A new efficient fourth order collocation scheme for solving Burgers’ equation. Appl. Math. Comput. 399, 126011 (2021)

    MathSciNet  MATH  Google Scholar 

  35. Singh, G., Garg, A., Kanwar, V., Ramos, H.: An efficient optimized adaptive step-size hybrid block method for integrating differential systems. Appl. Math. Comput. 362, 124567 (2019)

    MathSciNet  MATH  Google Scholar 

  36. Sivashinsky, G.I.: Instabilities, pattern formation, and turbulence in flames. Annu. Rev. Fluid Mech. 15(1), 179–199 (1983)

    Article  MATH  Google Scholar 

  37. Soliman, A.A.: A numerical simulation and explicit solutions of KdV-Burgers’ and Lax’s seventh-order KdV equations. Chaos Solitons Fractals 29(2), 294–302 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Tamsir, M., Dhiman, N., Srivastava, V.K.: Cubic trigonometric B-spline differential quadrature method for numerical treatment of Fisher’s reaction-diffusion equations. Alex. Eng. J. 57, 2019–2026 (2018)

    Article  MATH  Google Scholar 

  39. Uddin, M., Haq, S., Siraj-ul-Islam: A mesh-free numerical method for solution of the family of Kuramoto–Sivashinsky equations. Appl. Math. Comput. 212(2), 458–469 (2009)

    MathSciNet  MATH  Google Scholar 

  40. Wazzan, L.: A modified tanh–coth method for solving the general Burgers–Fisher and the Kuramoto–Sivashinsky equations. Commun. Nonlinear Sci. Numer. Simul. 14(6), 2642–2652 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for the Kuramoto–Sivashinsky equations and the Ito-type coupled KdV equations. Comput. Methods Appl. Mech. Eng. 195(25–28), 3430–3447 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Zarebnia, M., Parvaz, R.: Septic B-spline collocation method for numerical solution of the Kuramoto–Sivashinsky equation. Int. J. Math. Comput. Sci. 7(3), 544–548 (2013)

    Google Scholar 

Download references

Funding

Ms. Anurag Kaur is supported financially by the funding agency, the University Grants Commission (UGC), New Delhi, India under the scheme of UGC-CSIR NET-JRF with reference id 403645.

Author information

Authors and Affiliations

Authors

Contributions

AK carried out the Matlab programming. All authors contributed to manuscript conceptualization and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anurag Kaur.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicting interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Kanwar, V. Numerical Solution of Generalized Kuramoto–Sivashinsky Equation Using Cubic Trigonometric B-Spline Based Differential Quadrature Method and One-Step Optimized Hybrid Block Method. Int. J. Appl. Comput. Math 8, 20 (2022). https://doi.org/10.1007/s40819-021-01220-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40819-021-01220-1

Keywords

Mathematics Subject Classification

Navigation