Log in

Command Filter-Based Adaptive Fuzzy Tracking Control of Stochastic Robotic Systems with Full State Constraints

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

For stochastic robotic systems actuated by direct current (DC) motors with full-state constraints, adaptive trajectory tracking is investigated in this paper. The main challenge is how to deal with the highly coupled terms with the stochastic disturbance and unknown nonlinear functions. First, as an approximate instrument of unknown nonlinear functions, the fuzzy logic system is adopted to tackle the uncertainty of stochastic robotic systems. Second, the command filter technique is used to solve the “complexity explosion" problem in the traditional backstep** process, and error compensation mechanisms are introduced to eliminate the error influence caused by command filters. Then, based on barrier lyapunov functions (BLFs), the adaptive fuzzy tracking controller is designed such that the state constraints are not breached almost surely, all signals in the closed-loop system are bounded almost surely and the first-order moment of the tracking error converges to an arbitrarily small neighborhood of zero. Finally, the tracking problem of the two-link planar manipulator in stochastic surroundings is analysed to demonstrate the effectiveness and advantages of the proposed control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kurdila, A., Ben-Tzvi, P.: Dynamics and control of robotic systems. Wiley (2019)

    Google Scholar 

  2. Luz, J., Tusset, A., Janzen, F., et al.: Optimal control for robot manipulators with three-degress-of-freedom. Dyn Syst Theor Perspect 2018, 135–149 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Ouyang, P., Acob, J., Pano, V.: PD with sliding mode control for trajectory tracking of robotic system. Robot Comput Integr Manuf 30(2), 189–200 (2014)

    Article  Google Scholar 

  4. Cui, M., **e, X., Wu, Z.: Dynamics modeling and tracking control of robot manipulators in random vibration environment. IEEE Trans Autom Control 58(6), 1540–1545 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cui, M., Wu, Z., **e, X., et al.: Modeling and adaptive tracking for a class of stochastic Lagrangian control systems. Automatica 49(3), 770–779 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, L., Mendel, J.: Fuzzy basis functions, universal approximation, and orthogonal least-squares learning. IEEE Trans Neural Netw 3(5), 807–814 (1992)

    Article  Google Scholar 

  7. **ang, X., Yu, C., Lapierre, L., et al.: Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles. Int J Fuzzy Syst 20(2), 572–586 (2018)

    Article  MathSciNet  Google Scholar 

  8. Kim, Y., Lewis, F., Dawson, D.: Intelligent optimal control of robotic manipulators using neural networks. Automatica 36(9), 1355–1364 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhou, Q., Zhao, S., Li, H., et al.: Adaptive neural network tracking control for robotic manipulators with dead zone. IEEE Trans Neural Netw Learn Syst 30(12), 3611–3620 (2019)

    Article  MathSciNet  Google Scholar 

  10. Chen, Z., Huang, F., Fang, Y.: Adaptive fuzzy backstep** control for stable nonlinear bilateral teleoperation manipulators with enhanced transparency performance. IEEE Trans Ind Electron 67(1), 746–756 (2020)

    Article  Google Scholar 

  11. Farrell, J., Polycarpou, M., Sharma, M., et al.: Command filtered backstep**. IEEE Trans Autom Control 54(6), 1391–1395 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wang, H., Kang, S., Feng, Z.: Finite-time adaptive fuzzy command filtered backstep** control for a class of nonlinear systems. Int J Fuzzy Syst 21(8), 2575–2587 (2019)

    Article  MathSciNet  Google Scholar 

  13. Li, Y., Li, K., Tong, S.: Finite-time adaptive fuzzy output feedback dynamic surface control for MIMO non-strict feedback systems. IEEE Trans Fuzzy Syst 27(1), 96–110 (2019)

    Article  Google Scholar 

  14. Li, Y., Tong, S., Li, T.: Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstep**. Nonlinear Anal Real World Appl 14(1), 483–494 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, Y.: Finite time command filtered adaptive fault tolerant control for a class of uncertain nonlinear systems. Automatica 106, 117–123 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhao, L., Yu, J., Wang, Q.: Adaptive finite-time containment control of uncertain multiple manipulator systems. IEEE Trans Cybern 52(1), 556–567 (2022)

    Article  MathSciNet  Google Scholar 

  17. Jiang, Y., Wang, Y., Miao, Z., et al.: Composite-learning-based adaptive neural control for dual-arm robots with relative motion. IEEE Trans Neural Netw Learn Syst 33(3), 1010–1021 (2022)

    Article  MathSciNet  Google Scholar 

  18. Wang, L., Wang, H., Liu, P.: Adaptive finite-time fault-tolerant control for flexible-joint robotic stochastic systems with input saturation and sensor fault. Int J Adaptive Control Signal Process 36(10), 2479–2495 (2022)

    Article  MathSciNet  Google Scholar 

  19. Pan, Y., Du, P., Xue, H., et al.: Singularity-free fixed-time fuzzy control for robotic systems with user-defined performance. IEEE Trans Fuzzy Syst 29(8), 2388–2398 (2021)

    Article  Google Scholar 

  20. He, W., David, A., Yin, Z., et al.: Neural network control of a robotic manipulator with input deadzone and output constraint. IEEE Trans Syst Man Cybern Syst 46(6), 759–770 (2015)

    Article  Google Scholar 

  21. Hu, C., Wang, R., Yan, F., et al.: Output constraint control on path following of four-wheel independently actuated autonomous ground vehicles. IEEE Trans Vehicular Technol 65(6), 4033–4043 (2015)

    Article  Google Scholar 

  22. Yu, X., He, W., Li, H., et al.: Adaptive fuzzy full-state and output-feedback control for uncertain robots with output constraint. IEEE Trans Syst Man Cybern Syst 51(11), 6994–7007 (2021)

    Article  Google Scholar 

  23. Kong, L., He, W., Yang, C., et al.: Adaptive fuzzy control for coordinated multiple robots with constraint using impedance learning. IEEE Trans Cybern 49(8), 3052–3063 (2019)

    Article  Google Scholar 

  24. Ding, L., Li, S., Liu, Y., et al.: Adaptive neural network-based tracking control for full-state constrained wheeled mobile robotic system. IEEE Trans Syst Man Cybern Syst 47(8), 2410–2419 (2017)

    Article  Google Scholar 

  25. Sun, W., Su, S., **a, J., et al.: Adaptive fuzzy tracking control of flexible-joint robots with full-state constraints. IEEE Trans Syst Man Cybern Syst 49(11), 2201–2209 (2019)

    Article  Google Scholar 

  26. Mao, X.: Stochastic differential equations and their applications. Horwood, New York (1997)

    MATH  Google Scholar 

  27. Cui, M., Wu, Z.: Trajectory tracking of flexible joint manipulators actuated by DC-motors under random disturbances. J Franklin Inst 356(16), 9330–9343 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Øksendal, B.: Stochastic Differential Equations An Introduction With Applications. Springer, New York (2003)

    MATH  Google Scholar 

  29. Liu, Y., Lu, S., Tong, S., et al.: Adaptive control-based Barrier Lyapunov Functions for a class of stochastic nonlinear systems with full state constraints. Automatica 87, 83–93 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gao, Y., Sun, X., Wen, C., et al.: Adaptive tracking control for a class of stochastic uncertain nonlinear systems with input saturation. IEEE Trans Autom Control 62(5), 2498–2504 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61703359, 61673332, 62073275).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Likang Feng.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zheng, J. & Feng, L. Command Filter-Based Adaptive Fuzzy Tracking Control of Stochastic Robotic Systems with Full State Constraints. Int. J. Fuzzy Syst. 25, 2847–2859 (2023). https://doi.org/10.1007/s40815-023-01535-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01535-9

Keywords

Navigation